Descripteurs



Etendre la recherche sur niveau(x) vers le bas
Titre : Algorithmes : la bombe à retardement Type de document : texte imprimé Auteurs : Cathy O'Neil ; Cédric Villani (1973-....), Préfacier, etc. ; Sébastien Marty, Traducteur Editeur : Paris : Les Arènes Année de publication : 2018 Importance : 340 p. Format : 21 cm ISBN/ISSN/EAN : 978-2-35204-980-7 Langues : Français (fre) Langues originales : Anglais (eng) Descripteurs : 21e siècle , Données massives , Etats-Unis , Modèle mathématique , Niveau de vie Tags : Démocratie Conditions sociales Indicateurs sociaux Index. décimale : 239 Fouille de données - Data mining Résumé : Ancienne analyste à Wall Street devenue une figure majeure de la lutte contre les dérives des algorithmes, Cathy O'Neil dévoile ces "armes de destruction mathématiques" qui se développent grâce à l'ultra-connexion et leur puissance de calcul exponentielle. Brillante mathématicienne, elle explique avec une simplicité percutante comment les algorithmes font le jeu du profit. [Résumé éditeur] En ligne : https://www.eyrolles.com/Informatique/Livre/algorithmes-la-bombe-a-retardement-9 [...] Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=141450 Algorithmes : la bombe à retardement [texte imprimé] / Cathy O'Neil ; Cédric Villani (1973-....), Préfacier, etc. ; Sébastien Marty, Traducteur . - Paris : Les Arènes, 2018 . - 340 p. ; 21 cm.
ISBN : 978-2-35204-980-7
Langues : Français (fre) Langues originales : Anglais (eng)
Descripteurs : 21e siècle , Données massives , Etats-Unis , Modèle mathématique , Niveau de vie Tags : Démocratie Conditions sociales Indicateurs sociaux Index. décimale : 239 Fouille de données - Data mining Résumé : Ancienne analyste à Wall Street devenue une figure majeure de la lutte contre les dérives des algorithmes, Cathy O'Neil dévoile ces "armes de destruction mathématiques" qui se développent grâce à l'ultra-connexion et leur puissance de calcul exponentielle. Brillante mathématicienne, elle explique avec une simplicité percutante comment les algorithmes font le jeu du profit. [Résumé éditeur] En ligne : https://www.eyrolles.com/Informatique/Livre/algorithmes-la-bombe-a-retardement-9 [...] Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=141450 Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité E010032 239 ONE Ouvrage de référence ENSAE 2. Statistique Disponible I010001 239 ONEI Ouvrage Ensai 2. Statistique Disponible Algorithmic and high-frequency trading / Álvaro Cartea / Cambridge (GBR) ; West Nyack, NY : CUP. Cambridge University Press (2015)
![]()
Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité E008267 786 CAR Ouvrage de référence ENSAE R2-ENSAE Disponible Algorithms for reinforcement learning / Csaba Szepesvári / San Rafael, CA : Morgan and Claypool publ. (2010)
![]()
Titre : Algorithms for reinforcement learning Type de document : texte imprimé Auteurs : Csaba Szepesvári Editeur : San Rafael, CA : Morgan and Claypool publ. Année de publication : 2010 Collection : Artificial Intelligence and Machine Learning, ISSN 1939-4608 num. #9 Importance : XIII-89 p. Présentation : fig. Format : 24 cm ISBN/ISSN/EAN : 978-1-60845-492-1 Note générale : Bibliogr. p. 73-88 Langues : Anglais (eng) Descripteurs : Apprentissage automatique , Intelligence artificielle , Modèle mathématique Tags : Apprentissage par renforcement Reinforcement learning Index. décimale : 88 Intelligence artificielle Résumé : Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. [D'après le résumé de l'éditeur] Note de contenu : Relié ISBN = 978-1681732138 En ligne : http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_i [...] Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=141474 Algorithms for reinforcement learning [texte imprimé] / Csaba Szepesvári . - San Rafael, CA : Morgan and Claypool publ., 2010 . - XIII-89 p. : fig. ; 24 cm. - (Artificial Intelligence and Machine Learning, ISSN 1939-4608; #9) .
ISBN : 978-1-60845-492-1
Bibliogr. p. 73-88
Langues : Anglais (eng)
Descripteurs : Apprentissage automatique , Intelligence artificielle , Modèle mathématique Tags : Apprentissage par renforcement Reinforcement learning Index. décimale : 88 Intelligence artificielle Résumé : Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. [D'après le résumé de l'éditeur] Note de contenu : Relié ISBN = 978-1681732138 En ligne : http://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_i [...] Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=141474 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité I010027 88 SZEP Ouvrage Ensai 8. Informatique - Traitement de l'information Disponible
Titre : Allocation in networks Type de document : texte imprimé Auteurs : Hougaard, Jens Leth ; Hervé Moulin (1950-....), Préfacier, etc. Editeur : Cambridge, MA : MIT Press Année de publication : 2018 Importance : XXVI-268 p. Présentation : fig. Format : 24 cm ISBN/ISSN/EAN : 978-0-262-03864-5 Note générale : Notes bibliogr. Index Langues : Anglais (eng) Descripteurs : Allocation des ressources , Coût , Economie des réseaux , Microéconomie , Modèle économétrique , Modèle mathématique , Recherche opérationnelle , Redistribution des revenus , Réseau informatique Tags : Réseaux économiques Conception économique Règles d'allocation Système de revenu Partage des coûts Équité de la distribution Optimisation combinatoire Systèmes de distribution arborescents Jeux de routage Hiérarchie organisationnelle Index. décimale : 64 Economie mathématique Résumé : This book is a comprehensive overview of networks and economic design, presenting models and results drawn from economics, operations research, and computer science. It explores networks and economic design, focusing on the role played by allocation rules (revenue and cost-sharing schemes) in creating and sustaining efficient network solutions. It takes a normative approach, seeking economically efficient network solutions sustained by distributional fairness, and considers how different ways of allocating liability affect incentives for network usage and development. The text also presents an up-to-date overview of models and results currently scattered over several strands of literature, drawing on economics, operations research, and computer science. The book's analysis of allocation problems includes such classic models from combinatorial optimization as the minimum cost spanning tree and the traveling salesman problem. It examines the planner's ability to design mechanisms that will implement efficient network structures, both in large decentralized networks and when there is user-agent information asymmetry. Offering systematic theoretical analyses of various compelling allocation rules in cases of fixed network structures as well as discussions of network design problems, the book covers such topics as tree-structured distribution systems, routing games, organizational hierarchies, the “price of anarchy,” mechanism design, and efficient implementation. Appropriate as a reference for practitioners in network regulation and the network industry or as a text for graduate students, the book offers numerous illustrative examples and end-of-chapter exercises that highlight the concepts and methods presented. [D'après le résumé de l'éditeur] Note de contenu : With examples and exercises.
En ligne : https://mitpress.mit.edu/books/allocation-networks Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=141418 Allocation in networks [texte imprimé] / Hougaard, Jens Leth ; Hervé Moulin (1950-....), Préfacier, etc. . - Cambridge, MA : MIT Press, 2018 . - XXVI-268 p. : fig. ; 24 cm.
ISBN : 978-0-262-03864-5
Notes bibliogr. Index
Langues : Anglais (eng)
Descripteurs : Allocation des ressources , Coût , Economie des réseaux , Microéconomie , Modèle économétrique , Modèle mathématique , Recherche opérationnelle , Redistribution des revenus , Réseau informatique Tags : Réseaux économiques Conception économique Règles d'allocation Système de revenu Partage des coûts Équité de la distribution Optimisation combinatoire Systèmes de distribution arborescents Jeux de routage Hiérarchie organisationnelle Index. décimale : 64 Economie mathématique Résumé : This book is a comprehensive overview of networks and economic design, presenting models and results drawn from economics, operations research, and computer science. It explores networks and economic design, focusing on the role played by allocation rules (revenue and cost-sharing schemes) in creating and sustaining efficient network solutions. It takes a normative approach, seeking economically efficient network solutions sustained by distributional fairness, and considers how different ways of allocating liability affect incentives for network usage and development. The text also presents an up-to-date overview of models and results currently scattered over several strands of literature, drawing on economics, operations research, and computer science. The book's analysis of allocation problems includes such classic models from combinatorial optimization as the minimum cost spanning tree and the traveling salesman problem. It examines the planner's ability to design mechanisms that will implement efficient network structures, both in large decentralized networks and when there is user-agent information asymmetry. Offering systematic theoretical analyses of various compelling allocation rules in cases of fixed network structures as well as discussions of network design problems, the book covers such topics as tree-structured distribution systems, routing games, organizational hierarchies, the “price of anarchy,” mechanism design, and efficient implementation. Appropriate as a reference for practitioners in network regulation and the network industry or as a text for graduate students, the book offers numerous illustrative examples and end-of-chapter exercises that highlight the concepts and methods presented. [D'après le résumé de l'éditeur] Note de contenu : With examples and exercises.
En ligne : https://mitpress.mit.edu/books/allocation-networks Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=141418 Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité I010217 64 HOUG Ouvrage Ensai 6. Economie théorique Disponible An introduction to discrete-valued time series / Christian H. Weiss / Chichester (GBR) ; Hoboken, NJ : John Wiley & Sons (2018)
![]()
Titre : An introduction to discrete-valued time series Type de document : texte imprimé Auteurs : Christian H. Weiss Editeur : Chichester (GBR) ; Hoboken, NJ : John Wiley & Sons Année de publication : 2018 Importance : XV-284 p. Présentation : fig., tabl. Format : 24 cm ISBN/ISSN/EAN : 978-1-119-09696-2 Note générale : Bibliogr. p. 257-274. Index Langues : Anglais (eng) Descripteurs : Apprentissage (Théorie) , Apprentissage automatique , Échantillonnage , Modèle mathématique , Série temporelle , Statistique computationnelle , Statistique mathématique Tags : Systèmes échantillonnés Machine learning Index. décimale : 24 Séries temporelles - Prévision Résumé : This introduction to the field of discrete-valued time series, with a focus on count-data time series. Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. It provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series. It also covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties. It addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples. It includes dataset examples with all necessary R code provided on a companion website and Classic approaches like ARMA models and the Box-Jenkins program are also featured (and how to generate functions) with the basics of these approaches. [D'après le résumé de l'éditeur] En ligne : https://www.wiley.com/en-gb/An+Introduction+to+Discrete+Valued+Time+Series-p-978 [...] Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=139736 An introduction to discrete-valued time series [texte imprimé] / Christian H. Weiss . - Chichester (GBR) ; Hoboken, NJ : John Wiley & Sons, 2018 . - XV-284 p. : fig., tabl. ; 24 cm.
ISBN : 978-1-119-09696-2
Bibliogr. p. 257-274. Index
Langues : Anglais (eng)
Descripteurs : Apprentissage (Théorie) , Apprentissage automatique , Échantillonnage , Modèle mathématique , Série temporelle , Statistique computationnelle , Statistique mathématique Tags : Systèmes échantillonnés Machine learning Index. décimale : 24 Séries temporelles - Prévision Résumé : This introduction to the field of discrete-valued time series, with a focus on count-data time series. Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. It provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series. It also covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties. It addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples. It includes dataset examples with all necessary R code provided on a companion website and Classic approaches like ARMA models and the Box-Jenkins program are also featured (and how to generate functions) with the basics of these approaches. [D'après le résumé de l'éditeur] En ligne : https://www.wiley.com/en-gb/An+Introduction+to+Discrete+Valued+Time+Series-p-978 [...] Permalink : https://genes.bibli.fr/index.php?lvl=notice_display&id=139736 Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité e009605 24 WEI Ouvrage de référence CREST R1-CREST-MK2 Sorti jusqu'au 16/03/2020 I006739 24 WEIS Ouvrage Ensai 2. Statistique Disponible An introduction to statistical learning / James, Gareth / Berlin ; Heidelberg (DEU) ; New York ; Bâle (CHE) : Springer (2013)
![]()
PermalinkL'analyse conjointe, la statistique et le produit idéal / Centre international de statistique et d'informatique appliquées / Saint-Mandé : CISIA (1992)
PermalinkAnalyse statistique des durées de vie / Journées d'étude en statistique (03; 1988; Marseille) / Paris : Economica (1989)
PermalinkApplied economic forecasting using time series methods / Eric Ghysels / Oxford (GBR) ; New York ; Paris : OUP. Oxford University Press (2018)
![]()
PermalinkPermalinkApproaches to geo-mathematical modelling / Wilson, Alan / Chichester (GBR) ; Hoboken, NJ : John Wiley & Sons (2016)
![]()
PermalinkAsymptotic analysis of mixed effects models / Jiming Jiang / Boca Raton, FL ; Londres : Chapman and Hall/CRC Press (2017)
![]()
PermalinkAxioms of cooperative decision making / Hervé Moulin / Cambridge (GBR) ; West Nyack, NY : CUP. Cambridge University Press (1988)
![]()
PermalinkBayesian methods in epidemiology / Lyle D. Broemeling / Boca Raton, FL ; Londres : Chapman and Hall/CRC Press (2014)
![]()
PermalinkA biologist's guide to mathematical modeling in ecology and evolution / Sarah P. Otto / Princeton, NJ : Princeton University Press (2007)
![]()
PermalinkBond pricing and yield curve modeling / Riccardo Rebonato / Cambridge (GBR) ; West Nyack, NY : CUP. Cambridge University Press (2018)
![]()
PermalinkComputational Systems Biology of Cancer / Emmanuel Barillot / Boca Raton, FL ; Londres : Chapman and Hall/CRC Press (2012)
![]()
PermalinkConsumer demand and labor supply / William A. Barnett / Amsterdam ; New York ; Oxford (GBR) ; San Diego, CA : North-Holland (1981)
PermalinkPermalinkPermalink