Basic R for Finance

Diethelm Würtz
Longhow Lam
Andrew Ellis
Yohan Chalabi
R/Rmetrics eBook Series

R/Rmetrics eBooks is a series of electronic books and user guides aimed at students and practitioner who use R/Rmetrics to analyze financial markets.

A Discussion of Time Series Objects for R in Finance (2009)
Diethelm Würtz, Yohan Chalabi, Andrew Ellis

Portfolio Optimization with R/Rmetrics (2010),
Diethelm Würtz, William Chen, Yohan Chalabi, Andrew Ellis

Basic R for Finance (2010),
Diethelm Würtz, Yohan Chalabi, Longhow Lam, Andrew Ellis
Early Bird Edition

Diethelm Würtz, Andrew Ellis, Yohan Chalabi
Early Bird Edition

Diethelm Würtz, Mahendra Mehta, Andrew Ellis, Yohan Chalabi

Diethelm Würtz, Mahendra Mehta, David Scott, Juri Hinz
BASIC R FOR FINANCE

DIETHELM WÜRTZ
LONGHOW LAM
ANDREW ELLIS
YOHAN CHALABI

Rmetrics Association & Finance Online
DEDICATION

This book is dedicated to all those who have helped make Rmetrics what it is today: The leading open source software environment in computational finance and financial engineering.
R und Rmetrics are the talk of the town. The statistical software package R is one of the most promising tools for rapid prototyping of financial applications. The userR conferences and Rmetrics Meielisalp workshops reflect the growing interest in R und Rmetrics.

Have ever thought of giving R a try, using one of the many packages, or even writing your own functions and learning the programming language? If only the initial learning curve weren't so steep. This is where "Basic R for Finance" can help you: You will learn the basics of programming in R, and how to implement your models and applications. You will not only create graphics, you will also learn how to customize them to suit your needs. You will learn how to write your own programs, how to write efficient and optimized code. Furthermore, you will be assisted by a multitude of very detailed case studies, ranging from computing skewness and kurtosis statistics to designing and optimizing portfolios of assets.

This book is divided into two several thematically distinct parts: the first four parts give an introduction to R, and focus on the following topics: computations, programming, plotting and statistics and inference. Parts five, six, svem and eight contain a collection of case studies from topics such as utility functions, asset management, option valuation, and portfolio design.

We hope you enjoy this book!

Diethelm Würtz
Zurich, July 2010
CONTENTS

Dedication

Preface

Contents

List of Figures

List of Tables

I Computations

1 Data Structures

1.1 Vectors .. 3
1.2 Matrices .. 6
1.3 Arrays ... 9
1.4 Data Frames 10
1.5 Time Series 12
1.6 Lists ... 14
1.7 Printing the Object Structure 18

2 Data Manipulation

2.1 Manipulating Vectors 19
2.2 Manipulating Matrices 24
2.3 Manipulating Data Frames 28
2.4 Working with Attributes 34
2.5 Manipulating Character Strings 36
2.6 Creating Factors from Continuous Data 40

3 Importing and Exporting Data

3.1 Writing to Text Files 43
3.2 Reading from a Text File with scan() 44
3.3 Reading from a Text File with readLines() 45
CONTENTS

3.4 Reading from a Text File with read.table() 46
3.5 Importing Example Data Files 49
3.6 Importing Historical Data Sets from the Internet 50

4 Object Types ... 51
4.1 Characterization of Objects 51
4.2 Double .. 52
4.3 Integers ... 57
4.4 Complex .. 60
4.5 Logical ... 61
4.6 Missing Data ... 62
4.7 Character ... 63
4.8 NULL .. 63

II Programming .. 65

5 Writing Functions .. 67
5.1 Writing your first function 67
5.2 Arguments and Variables 69
5.3 Scoping rules .. 72
5.4 Lazy evaluation ... 73
5.5 Flow control .. 74

6 Debugging your R functions 79
6.1 The traceback() function 79
6.2 The function warning() and stop() 80
6.3 Stepping Through a Function 81
6.4 The function browser() 82

7 Efficient Calculations .. 83
7.1 Vectorized Computations 83
7.2 The Family of apply() Functions 86
7.3 The function by() .. 88
7.4 The Function outer() 89

8 Using S3 and S4 Classes 91
8.1 S3 Class Model Basics 91
8.2 S4 Class Model Basics 96

9 R Packages .. 97
9.1 Base R packages ... 97
9.2 Contributed R Packages from CRAN 98
9.3 R Packages under Development from R-forge 98
9.4 R Package Usage .. 98
Contents

9.5 Package Management Functions 99

III Plotting

10 High Level Plots 103
 10.1 Scatter Plots ... 103
 10.2 Line Plots .. 104
 10.3 More about the plot () Function 106
 10.4 Distribution Plots 107
 10.5 Pie and Bar Plots 110
 10.6 Stars- and Segments Plots 112
 10.7 Bi- and Multivariate Plots 114

11 Customizing Plots ... 117
 11.1 More About Plot Function Arguments 117
 11.2 Graphical Parameters 120
 11.3 Margins, Plot and Figure Regions 123
 11.4 More About Colours 126
 11.5 Adding Graphical Elements to an Existing Plot 128
 11.6 Controlling the Axes 132

12 Graphical Devices ... 135
 12.1 Available Devices .. 135
 12.2 Device Management under Windows 135
 12.3 List of device functions 137

IV Statistics and Inference

13 Basic Statistical Functions 141
 13.1 Statistical Summaries 141
 13.2 Distribution Functions 143
 13.3 Random Numbers ... 145
 13.4 Hypothesis Testing 146
 13.5 Parameter Estimation 148
 13.6 Distribution tails and quantiles 149

14 Linear Time Series Analysis 151
 14.1 Overview of Functions for Time Series Analysis 151
 14.2 Simulation from an Autoregressive Process 152
 14.3 AR - Fitting Autoregressive Models 156
 14.4 Autoregressive Moving Average Modelling 160
 14.5 Forecasting From Estimated Models 163
Contents

15 Regression Modeling
- 15.1 Linear Regression Models 165
- 15.2 Parameter Estimation .. 169
- 15.3 Model Diagnostics ... 172
- 15.4 Updating a linear model 174

16 Dissimilarities of Data Records
- 16.1 Correlations and Pairwise Plots 179
- 16.2 Stars and Segments Plots 186
- 16.3 k-means Clustering .. 188
- 16.4 Hierarchical Clustering 192

V Case Studies: Utility Functions
- 17 Compute Skewness Statistics 199
 - 17.1 Assignment .. 199
 - 17.2 R Implementation .. 199
 - 17.3 Examples .. 201

18 Compute Kurtosis Statistics 203
- 18.1 Assignment .. 203
- 18.2 R Implementation .. 203
- 18.3 Examples .. 204

19 Extracting Package Description 205
- 19.1 Assignment .. 205
- 19.2 R Implementation .. 205
- 19.3 Examples .. 206

20 Function Listing and Counting 207
- 20.1 Assignment .. 207
- 20.2 R Implementation .. 207
- 20.3 Examples .. 208

VI Case Studies: Asset Management 211

21 Generalized Error Distribution 213
- 21.1 Assignment .. 213
- 21.2 R Implementation .. 213
- 21.3 Examples .. 215
- 21.4 Exercises ... 219

22 Skewed Return Distributions 221
22.1 Assignment ... 221
22.2 R Implementation ... 221
22.3 Examples .. 223
22.4 Exercise ... 224

23 Jarque-Bera Hypothesis Test 225
23.1 Assignment ... 225
23.2 R Implementation ... 226
23.3 Examples ... 227

24 PCA Ordering of Assets 229
24.1 Assignment ... 229
24.2 R Implementation ... 229
24.3 Examples ... 230

25 Clustering of Asset Returns 233
25.1 Assignment ... 233
25.2 R Implementation ... 233
25.3 Examples ... 235
25.4 Exercises ... 235

VII Case Studies: Option Valuation 237

26 Black Scholes Option Price 239
26.1 Assignment ... 239
26.2 R Implementation ... 241
26.3 Examples ... 242

27 Black Scholes Option Greeks 245
27.1 Assignment ... 245
27.2 R Implementation ... 247
27.3 Examples ... 248

28 American Calls with Dividends 251
28.1 Assignment ... 251
28.2 R Implementation ... 252
28.3 Examples ... 254

29 Monte Carlo Option Pricing 255
29.1 Assignment ... 255
29.2 R Implementation ... 255
29.3 Examples ... 256
29.4 Exercises ... 258
Contents

VII Case Studies: Portfolio Design 259

30 **Mean-Variance Markowitz Portfolio** 261
 30.1 *Assignment* ... 261
 30.2 *R Implementation* ... 262
 30.3 *Examples* .. 263

31 **Markowitz Tangency Portfolio** 267
 31.1 *Assignment* .. 267
 31.2 *R Implementation* ... 268
 31.3 *Examples* .. 269

32 **Long Only Portfolio Frontier** 271
 32.1 *Assignment* .. 271
 32.2 *R Implementation* ... 271
 32.3 *Examples* .. 272

33 **Minimum Regret Portfolio** 275
 33.1 *Assignment* .. 275
 33.2 *R Implementation* ... 275
 33.3 *Examples* .. 277

IX Appendix 279

A **Rmetrics Terms of Legal Use** 281

B **R Manuals on CRAN** 283

Index 285

About the Authors 293
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Perspective plot</td>
<td>90</td>
</tr>
<tr>
<td>8.1</td>
<td>Vector, time series, density and acf Plots</td>
<td>93</td>
</tr>
<tr>
<td>8.2</td>
<td>Lagged Time Series Plot</td>
<td>94</td>
</tr>
<tr>
<td>8.3</td>
<td>Linear regression Plot</td>
<td>95</td>
</tr>
<tr>
<td>10.1</td>
<td>A scatterplot</td>
<td>104</td>
</tr>
<tr>
<td>10.2</td>
<td>A Line Plot</td>
<td>105</td>
</tr>
<tr>
<td>10.3</td>
<td>A Curve Plot</td>
<td>106</td>
</tr>
<tr>
<td>10.4</td>
<td>Different uses of the function plot</td>
<td>108</td>
</tr>
<tr>
<td>10.5</td>
<td>Distribution Plots</td>
<td>110</td>
</tr>
<tr>
<td>10.6</td>
<td>Pie and Bar Plots</td>
<td>112</td>
</tr>
<tr>
<td>10.7</td>
<td>Matrix Bar Plots</td>
<td>113</td>
</tr>
<tr>
<td>10.8</td>
<td>Stars Plots</td>
<td>114</td>
</tr>
<tr>
<td>10.9</td>
<td>Example Plots</td>
<td>116</td>
</tr>
<tr>
<td>11.1</td>
<td>Population versus GDP Real Plot</td>
<td>121</td>
</tr>
<tr>
<td>11.2</td>
<td>Regions Plots</td>
<td>124</td>
</tr>
<tr>
<td>11.3</td>
<td>Plot layout</td>
<td>125</td>
</tr>
<tr>
<td>11.4</td>
<td>Colour Palette</td>
<td>128</td>
</tr>
<tr>
<td>11.5</td>
<td>Colour Wheels</td>
<td>129</td>
</tr>
<tr>
<td>11.6</td>
<td>plot</td>
<td>131</td>
</tr>
<tr>
<td>11.7</td>
<td>Axis Controls</td>
<td>134</td>
</tr>
<tr>
<td>14.1</td>
<td>Simulated AR(2) time series plot</td>
<td>155</td>
</tr>
<tr>
<td>14.2</td>
<td>ACF nad PACF plots for an AR(2) model</td>
<td>156</td>
</tr>
<tr>
<td>14.3</td>
<td>GNP time series plot</td>
<td>158</td>
</tr>
<tr>
<td>14.4</td>
<td>GNP time series diagnostics</td>
<td>162</td>
</tr>
<tr>
<td>14.5</td>
<td>Residual Plots</td>
<td>163</td>
</tr>
<tr>
<td>15.1</td>
<td>plot3Plot</td>
<td>173</td>
</tr>
<tr>
<td>15.2</td>
<td>plotlmdiagPlot</td>
<td>174</td>
</tr>
<tr>
<td>15.3</td>
<td>cfnaiPlot</td>
<td>177</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>15.4</td>
<td>treasuryPlot</td>
<td>178</td>
</tr>
<tr>
<td>16.1</td>
<td>A pairs plot of correlations</td>
<td>181</td>
</tr>
<tr>
<td>16.2</td>
<td>A correlation image plot</td>
<td>183</td>
</tr>
<tr>
<td>16.3</td>
<td>Pension fund time series plot</td>
<td>185</td>
</tr>
<tr>
<td>16.4</td>
<td>Pension fund correlations plot</td>
<td>186</td>
</tr>
<tr>
<td>16.5</td>
<td>A stars plot</td>
<td>188</td>
</tr>
<tr>
<td>16.6</td>
<td>A stars plot</td>
<td>189</td>
</tr>
<tr>
<td>16.7</td>
<td>A boxplot features stars plot</td>
<td>190</td>
</tr>
<tr>
<td>16.8</td>
<td>Market caps dendrogram plot</td>
<td>193</td>
</tr>
<tr>
<td>16.9</td>
<td>Pension fund dendrogram plot</td>
<td>195</td>
</tr>
<tr>
<td>21.1</td>
<td>GED Density Plots for (c(1, 2, 3))</td>
<td>216</td>
</tr>
<tr>
<td>21.2</td>
<td>Histogram Plots for the LPP Benchmark Indices</td>
<td>218</td>
</tr>
<tr>
<td>21.3</td>
<td>LPP Histogram Plots with fitted GED</td>
<td>219</td>
</tr>
<tr>
<td>22.1</td>
<td>Skewed Normal Distribution</td>
<td>224</td>
</tr>
<tr>
<td>23.1</td>
<td>Quantile-Quantile Plots for the SBI, SII, and SPI</td>
<td>228</td>
</tr>
<tr>
<td>24.1</td>
<td>Similarity Plot of Swiss Pension Fund Benchmark</td>
<td>232</td>
</tr>
<tr>
<td>25.1</td>
<td>LPP Dendrogram Plot</td>
<td>236</td>
</tr>
<tr>
<td>30.1</td>
<td>Pie Plot of Portfolio Weights</td>
<td>265</td>
</tr>
<tr>
<td>32.1</td>
<td>Efficient Frontier and Minimum Variance Locus</td>
<td>274</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Functions that can be applied to vectors 4
1.2 Functions that can be applied on matrices 9
1.3 ts Function arguments 12
1.4 list Function arguments 14
3.1 Scan Arguments ... 44
3.2 readLines() arguments 45
3.3 read.table Arguments 46
3.4 Example file formats 49
4.1 Object Types .. 51
4.2 Further Object Types 51
4.3 Logical Operators ... 61
6.1 Debugging Functions 79
9.1 List of Base Packages 97
9.2 GUI Packages Menu 98
9.3 Package Management Functions 99
10.1 Plot Functions .. 106
10.2 Plot Functions for Distributions 107
10.3 Bi and Multivariate Plot Functions 114
11.1 Selected arguments for plot functions 117
11.2 Type argument for plot functions 118
11.3 Font arguments for plot functions 118
11.4 cex arguments for plot functions 118
11.5 las argument for plot functions 119
11.6 lty argument for plot functions 119
11.7 par function Arguments 122
11.8 Colour palettes .. 127
11.9 Adding Graphical Elements 128
12.1 R's Graphics Devices 135
12.2 R's Device functions 137
13.1 Basic Statistics Functions 141
13.2 Distribution .. 144
13.3 Distribution Functions 144
13.4 Hyphthesis Test Functions 146
14.1 R Functions for ARMA Time Series Analysis 151
14.2 Arguments of the function filter 152
14.3 Arguments of the function ar 157
14.4 Values of the function ar 159
14.5 Arguments of the function arima 160
14.6 Arguments of the function tsdiag 161
14.7 Arguments of the function residuals 161
15.1 List of functions that accept an lm object 178
16.1 Column Statistics Functions 184
PART I

COMPUTATIONS
CHAPTER 1

DATA STRUCTURES

Data structures describe various ways of coherently organizing data. The most common data structures in R are:

- vectors
- matrix
- array
- data frame
- time series
- list

1.1 VECTORS

The simplest structure in R is the vector. A vector is an object that consists of a number of elements of the same type, for example all doubles or all logical, as is called an atomic object. A vector with the name ‘x’ consisting of four elements of type ‘double’ (10, 5, 3, 6) can be constructed using the function c.

```r
> x <- c(10, 5, 3, 6)
> x
[1] 10 5 3 6
```

The function `c` merges an arbitrary number of vectors to one vector. A single number is regarded as a vector of length one.

```r
> y <- c(x, 0.55, x, x)
> y
[1] 10.00 5.00 3.00 6.00 0.55 10.00 5.00 3.00 6.00 10.00 5.00 3.00 6.00
```

```r
[13] 6.00
```
Typing the name of an object in the commands window results in printing the object. The numbers between square brackets indicate the position of the following element in the vector.

Use the function `round` to round the numbers in a vector.

```r
> round(y, 3)
[1] 10.00 5.00 3.00 6.00 0.55 10.00 5.00 3.00 6.00 10.00 5.00 3.00
[13] 6.00
```

Mathematical operators

Calculations on (numerical) vectors are usually performed on each element. For example, `x * x` results in a vector which contains the squared elements of `x`.

```r
> x
[1] 10  5  3  6
> z <- x * x
> z
[1] 100 25  9 36
```

The symbols for elementary arithmetic operations are `+`, `-`, `*`, `/`. Use the `^` symbol to raise power. Most of the standard mathematical functions are available in R. These functions also work on each element of a vector. For example the logarithm of `x`:

```r
> log(x)
[1] 2.3026 1.6094 1.0986 1.7918
```
1.1. Vectors

The recycling rule

It is not necessary to have vectors of the same length in an expression. If two vectors in an expression are not of the same length then the shorter one will be repeated until it has the same length as the longer one. A simple example is a vector and a number which is to recall a vector of length one.

```r
> sqrt(x) + 2
```

In the above example the 2 is repeated 4 times until it has the same length as x and then the addition of the two vectors is carried out. In the next example, x has to be repeated 1.5 times in order to have the same length as y. This means the first two elements of x are added to x and then x * y is calculated.

```r
> x <- c(1, 2, 3, 4)
> y <- c(1, 2, 3, 4, 5, 6)
> z <- x * y
> z
[1] 1 4 9 16 5 12
```

Generating vectors with the (:) column operator

Regular sequences of numbers can be very handy for all sorts of reasons. Such sequences can be generated in different ways. The easiest way is to use the column operator (:).

```r
> index <- 1:20
> index
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
```

A descending sequence is obtained by `20:1`.

The sequence function `seq()`

The function `seq()` together with its arguments `from`, `to`, `by` or `length` is used to generate more general sequences. Specify the beginning and end of the sequence and either specify the length of the sequence or the increment.

```r
> u <- seq(from = -3, to = 3, by = 0.5)
> u
[1] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
```

The following commands have the same result:

```r
> u <- seq(-3, 3, length = 13)
> u <- (-6):6/2
```
The function seq can also be used to generate vectors with POSIXct elements (a sequence of dates). The following examples speak for themselves.

```r
> seq(as.POSIXct("2003-04-23"), by = "month", length = 12)

> iso.tS = seq(ISOdate(1910, 1, 1), ISOdate(1999, 1, 1), "years")
> head(iso.tS, 12)
[1] "1910-01-01 12:00:00 GMT" "1911-01-01 12:00:00 GMT" [3] "1912-01-01 12:00:00 GMT" "1913-01-01 12:00:00 GMT" [5] "1914-01-01 12:00:00 GMT" "1915-01-01 12:00:00 GMT" [7] "1916-01-01 12:00:00 GMT" "1917-01-01 12:00:00 GMT" [9] "1918-01-01 12:00:00 GMT" "1919-01-01 12:00:00 GMT" [11] "1920-01-01 12:00:00 GMT" "1921-01-01 12:00:00 GMT"
```

The repeat function `rep()`

The function `rep()` repeats a given vector. The first argument is the vector and the second argument can be a number that indicates how often the vector needs to be repeated.

```r
> rep(1:4, 4)
[1] 1 2 3 4 1 2 3 4 1 2 3 4
```

The second argument can also be a vector of the same length as the vector used for the first argument. In this case each element in the second vector indicates how often the corresponding element in the first vector is repeated.

```r
> rep(1:4, c(2, 2, 2, 2))
[1] 1 1 2 2 3 3 4 4
> rep(1:4, 1:4)
[1] 1 2 2 3 3 4 4 4
```

For information about other options of the function `rep` type `help(rep)`.

To generate vectors with random elements you can use the functions `rnorm` or `runif`. There are more of these functions.

```r
> x <- rnorm(10)
> y <- runif(10, 4, 7)
```

1.2 Matrices

A matrix can be regarded as a vector with a special dimension attribute. As with vectors, all the elements of a matrix must be of the same data type. A matrix can be generated in several ways.
Converting vectors to matrices with the \texttt{dim()} function

Use the function \texttt{dim()} to convert a vector into a matrix. It does internally add the special attribute “dim” to the vector.

\begin{verbatim}
> x <- 1:8
> dim(x) <- c(2, 4)
> x
[1,] 1 3 5 7
[2,] 2 4 6 8
\end{verbatim}

Generate matrices with the \texttt{matrix()} function

Alternatively use the function \texttt{matrix()} to generate a matrix object.

\begin{verbatim}
> x <- matrix(1:8, 2, 4)
> x
[1,] 1 3 5 7
[2,] 2 4 6 8
\end{verbatim}

Note by default the matrix is filled by column as in the previous example. To fill the matrix by row specify \texttt{byrow = TRUE} as argument in the \texttt{matrix} function.

\begin{verbatim}
> x <- matrix(1:8, 2, 4, byrow = TRUE)
> x
[1,] 1 2 3 4
[2,] 5 6 7 8
\end{verbatim}

Binding vectors column and row wise

Use the function \texttt{cbind()} to create a matrix by binding two or more vectors as column vectors.

\begin{verbatim}
> cbind(c(1, 2, 3), c(4, 5, 6))
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
\end{verbatim}

The function \texttt{rbind()} is used to create a matrix by binding two or more vectors as row vectors.

\begin{verbatim}
> rbind(c(1, 2, 3), c(4, 5, 6))
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
\end{verbatim}
Calculations on matrices

Since a matrix is a vectors with a special attribute, all the mathematical functions that apply to vectors also apply to matrices and are applied on each matrix element.

```r
> x * x^2
[1,]   1   8  27  64
[2,] 125 216 343 512

> max(x)
[1] 8
```

You can multiply a matrix with a vector. The outcome may be surprising:

```r
> x <- matrix(1:16, ncol = 4)
> y <- 7:10
> x * y
[1,]   7  35  63  91
[2,]  16  48  80 112
[3,]  27  63  99 135
[4,]  40  80 120 160

> x <- matrix(1:28, ncol = 4)
> y <- 7:10
> x * y
[1,]   7  80 135 176 120 171 208
[2,]  16  63 160 207 200 243
[3,]  27  80 119 175 144
[4,]  40  99 144 175 170
[5,]  35 120 171 208
[6,]  48  91 200 243
[7,]  63 112 147 280
```

As an exercise, try to find out what R did.

Matrix multiplication

To perform a matrix multiplication in the mathematical sense, use the operator: `%*%`. The dimensions of the two matrices must conform. In the following example the dimensions are wrong:

```r
x <- matrix(1:8, ncol = 2)
x %*% x
```

```
Error in x %*% x : non-conformable arguments
```
The transposed matrix

A matrix multiplied with its transposed \(t(x) \) always works.

\[
> x \%\%*\% t(x)
\]

\[
[1,] 774 820 866 912 958 1004 1050
[2,] 820 870 920 970 1020 1070 1120
[3,] 866 920 974 1028 1082 1136 1190
[4,] 912 970 1028 1086 1144 1202 1260
[5,] 958 1020 1082 1144 1206 1268 1330
[6,] 1004 1070 1136 1202 1268 1334 1400
[7,] 1050 1120 1190 1260 1330 1400 1470
\]

R has a number of matrix specific operations, for example:

Listing 1.2: Some functions that can be applied on matrices.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chol(x)</td>
<td>Choleski decomposition</td>
</tr>
<tr>
<td>col(x)</td>
<td>Matrix with column numbers of the elements</td>
</tr>
<tr>
<td>diag(x)</td>
<td>Create a diagonal matrix from a vector</td>
</tr>
<tr>
<td>ncol(x)</td>
<td>Returns the number of columns of a matrix</td>
</tr>
<tr>
<td>nrow(x)</td>
<td>Returns the number of rows of a matrix</td>
</tr>
<tr>
<td>qr(x)</td>
<td>QR matrix decomposition</td>
</tr>
<tr>
<td>row(x)</td>
<td>Matrix with row numbers of the elements</td>
</tr>
<tr>
<td>solve(A,b)</td>
<td>Solve the system (Ax=b)</td>
</tr>
<tr>
<td>solve(x)</td>
<td>Calculate the inverse</td>
</tr>
<tr>
<td>svd(x)</td>
<td>Singular value decomposition</td>
</tr>
<tr>
<td>var(x)</td>
<td>Covariance matrix of the columns</td>
</tr>
</tbody>
</table>

A detailed description of these functions can be found in the corresponding help files, which can be accessed by typing for example \(?\text{diag}\) in the R Console.

1.3 Arrays

Arrays are vectors with a dimension attribute specifying more than two dimensions. A vector is a one-dimensional array and a matrix is a two dimensional array. As with vectors and matrices, all the elements of an array must be of the same data type. An example of an array is the three-dimensional array ‘iris3’, which is a built-in data object in R. A three dimensional array can be regarded as a block of numbers.

\[
> x <- 1:8
> dim(x) <- c(2, 2)
> x
\]

\[
[,1] [,2]
[1,] 1 2
[2,] 3 4
\]
All basic arithmetic operations which apply to vectors are also applicable to arrays and are performed on each element.

```r
> test <- iris + 2 * iris
```

The function `array()` is used to create an array object

```r
> newarray <- array(c(1:8, 11:18, 111:118), dim = c(2, 4, 3))
> newarray
[1,]  1  3  5  7
[2,]  2  4  6  8

[1,] 11 13 15 17
[2,] 12 14 16 18

[1,] 111 113 115 117
[2,] 112 114 116 118
```

1.4 Data Frames

Data frames can be regarded as lists with element of the same length that are represented in a two dimensional object. Data frames can have columns of different data types and are the most convenient data structure for data analysis in R. In fact, most statistical modeling routines in R require a data frame as input.

One of the built-in data frames in R is Longley’s Economic Data set.

```r
> data(longley)
> longley
```
The data set list from 1947 to 1962 U.S. economic data including the GNP implicit price deflator, Gross national Product GNP, number of unemployed, number of people in the armed forces, the year, and the number of people employed.

Data frame attributes

A data frame can have the attributes names and row.names. The attribute names contains the column names of the data frame and the attribute row.names contains the row names of the data frame. The attributes of a data frame can be retrieved separately from the data frame with the functions names() and rownames(). The result is a character vector containing the names.

```r
> rownames(longley)
> names(longley)
[1] "GNP.deflator" "GNP" "Unemployed" "Armed.Forces" "Population" "Year" "Employed"
```

Creating data frames

You can create data frames in several ways, by importing a data frame from a data file for example, or by using the function data.frame(). This function can be used to create new data frames or to convert other objects into data frames.

An examples how to create a `data.frame()` from scratch:
> myLogical <- sample(c(TRUE, FALSE), size = 10, replace = TRUE)
> myNumeric <- rnorm(10)
> myCharacter <- sample(c("AA", "A", "B", "BB"), size = 10, replace = TRUE)
> myDataFrame <- data.frame(myLogical, myNumeric, myCharacter)
> myDataFrame

myLogical myNumeric myCharacter
1 TRUE 2.05236 A
2 TRUE -0.63297 B
3 TRUE 0.59791 A
4 TRUE 1.22769 B
5 FALSE 0.97853 B
6 FALSE 0.32813 AA
7 FALSE 0.14386 BB
8 FALSE -0.17417 AA
9 FALSE -0.18186 AA
10 FALSE 1.13973 BB

1.5 Time Series

In R a time series object can be created with the function `ts()` which returns an object of class "ts".

> args(ts)
function (data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class = if (nseries >
1) c("mts", "ts") else "ts", names = if (!is.null(dimnames(data))) colnames(data) else paste("Series",
seq(nseries)))

NULL

Listing 1.3: Arguments of the function ts.

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>numeric vector or matrix of the observed values</td>
</tr>
<tr>
<td>start</td>
<td>time of the first observation</td>
</tr>
<tr>
<td>end</td>
<td>time of the last observation</td>
</tr>
<tr>
<td>frequency</td>
<td>number of observations per unit of time.</td>
</tr>
<tr>
<td>deltat</td>
<td>fraction of sampling period between observations</td>
</tr>
<tr>
<td>ts.eps</td>
<td>time series comparison tolerance</td>
</tr>
<tr>
<td>class</td>
<td>class to be given to the result</td>
</tr>
<tr>
<td>names</td>
<td>character vector of names for multiple time series</td>
</tr>
</tbody>
</table>

The function `ts()` combines two components, (i) the data, a vector or matrix of numeric values, and (ii) the time stamps of the data. Note the time stamps are always equispaced points in time. In this case we say the function `ts()` generates regular time series. Here is an example from R’s UKgas data file.

> UKgas
1.5. Time Series

<table>
<thead>
<tr>
<th>Year</th>
<th>Qtr1</th>
<th>Qtr2</th>
<th>Qtr3</th>
<th>Qtr4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>160.1</td>
<td>129.7</td>
<td>84.8</td>
<td>126.1</td>
</tr>
<tr>
<td>1961</td>
<td>160.1</td>
<td>124.9</td>
<td>84.8</td>
<td>116.9</td>
</tr>
<tr>
<td>1962</td>
<td>169.7</td>
<td>140.9</td>
<td>89.7</td>
<td>123.3</td>
</tr>
<tr>
<td>1963</td>
<td>187.3</td>
<td>144.1</td>
<td>92.9</td>
<td>128.1</td>
</tr>
<tr>
<td>1964</td>
<td>176.1</td>
<td>147.3</td>
<td>89.7</td>
<td>123.3</td>
</tr>
<tr>
<td>1965</td>
<td>185.7</td>
<td>155.3</td>
<td>99.3</td>
<td>131.3</td>
</tr>
<tr>
<td>1966</td>
<td>200.1</td>
<td>161.7</td>
<td>102.5</td>
<td>136.1</td>
</tr>
<tr>
<td>1967</td>
<td>204.9</td>
<td>176.1</td>
<td>112.1</td>
<td>140.9</td>
</tr>
<tr>
<td>1968</td>
<td>227.3</td>
<td>195.3</td>
<td>115.3</td>
<td>142.5</td>
</tr>
<tr>
<td>1969</td>
<td>244.9</td>
<td>214.5</td>
<td>118.5</td>
<td>153.7</td>
</tr>
<tr>
<td>1970</td>
<td>244.9</td>
<td>216.1</td>
<td>188.9</td>
<td>142.5</td>
</tr>
<tr>
<td>1971</td>
<td>301.0</td>
<td>196.9</td>
<td>136.1</td>
<td>267.3</td>
</tr>
<tr>
<td>1972</td>
<td>317.0</td>
<td>230.5</td>
<td>152.1</td>
<td>336.2</td>
</tr>
<tr>
<td>1973</td>
<td>371.4</td>
<td>240.1</td>
<td>158.5</td>
<td>355.4</td>
</tr>
<tr>
<td>1974</td>
<td>449.9</td>
<td>286.6</td>
<td>179.3</td>
<td>403.4</td>
</tr>
<tr>
<td>1975</td>
<td>491.5</td>
<td>321.8</td>
<td>177.7</td>
<td>409.8</td>
</tr>
<tr>
<td>1976</td>
<td>593.9</td>
<td>329.8</td>
<td>176.1</td>
<td>483.5</td>
</tr>
<tr>
<td>1977</td>
<td>584.3</td>
<td>395.4</td>
<td>187.3</td>
<td>485.1</td>
</tr>
<tr>
<td>1978</td>
<td>669.2</td>
<td>421.0</td>
<td>216.1</td>
<td>509.1</td>
</tr>
<tr>
<td>1979</td>
<td>827.7</td>
<td>467.5</td>
<td>209.7</td>
<td>542.7</td>
</tr>
<tr>
<td>1980</td>
<td>840.5</td>
<td>414.6</td>
<td>217.7</td>
<td>678.8</td>
</tr>
<tr>
<td>1981</td>
<td>848.5</td>
<td>437.0</td>
<td>289.7</td>
<td>701.2</td>
</tr>
<tr>
<td>1982</td>
<td>925.3</td>
<td>443.4</td>
<td>214.5</td>
<td>683.6</td>
</tr>
<tr>
<td>1983</td>
<td>917.3</td>
<td>515.5</td>
<td>224.1</td>
<td>694.8</td>
</tr>
<tr>
<td>1984</td>
<td>898.4</td>
<td>477.1</td>
<td>233.7</td>
<td>730.8</td>
</tr>
<tr>
<td>1985</td>
<td>1087.0</td>
<td>534.7</td>
<td>281.8</td>
<td>787.6</td>
</tr>
<tr>
<td>1986</td>
<td>1163.9</td>
<td>613.1</td>
<td>347.4</td>
<td>782.8</td>
</tr>
</tbody>
</table>

```r
> class(UKgas)
[1] "ts"
```

The following examples show how to create objects of class "ts" from scratch.

Create a monthly series

Create a time series of random normal deviates starting from January 1987 with 100 monthly intervals

```r
> ts(data = round(rnorm(100), 2), start = c(1987), freq = 12)
```

```r
Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec
1987  1.64  0.65  0.95 -0.05  1.66  0.06  1.28 -1.40  0.60 -0.31 -0.36
1988 -0.23 -0.47  2.52  0.81  1.87 -0.21  1.77 -0.43  0.80  0.84 -0.67  0.60
1989 -0.43  1.59  1.71  0.86  0.55 -0.42  0.33  1.04 -1.56 -0.61 -0.14 -1.24
1990 -0.67 -0.11  0.98 -1.68 -0.62 -0.51  2.07  0.41 -0.66  0.23  0.59 -0.91
1991  1.37  0.98  1.42 -1.47  0.25  1.59 -2.09  0.75 -0.22 -0.09 -0.58  0.21
1992 -0.03 -0.43  0.08  0.64  1.99  0.59 -0.56 -0.90  0.67 -1.64  0.68 -2.15
1993  0.45  0.95 -0.17  0.34 -1.22 -0.28 -1.50  0.85  1.15 -0.86  1.05 -0.70
1994  0.23 -1.52 -1.02 -0.25 -2.92  1.90  0.26  0.37  0.19  0.59  1.16  2.22
1995 -0.19 -0.06  0.48 -0.91
```

```r
> class(ts)
[1] "function"
```
Create a multivariate time series

Now create a bivariate time series starting from April 1987 with 12 monthly intervals

```r
> ts(data = matrix(rnorm(24), ncol = 2), start = c(1987, 4), freq = 12)
```

<table>
<thead>
<tr>
<th>Series 1</th>
<th>Series 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 1987</td>
<td>-1.166093</td>
</tr>
<tr>
<td>May 1987</td>
<td>-0.559545</td>
</tr>
<tr>
<td>Jun 1987</td>
<td>0.027019</td>
</tr>
<tr>
<td>Jul 1987</td>
<td>0.515447</td>
</tr>
<tr>
<td>Aug 1987</td>
<td>-1.548343</td>
</tr>
<tr>
<td>Sep 1987</td>
<td>-0.637109</td>
</tr>
<tr>
<td>Oct 1987</td>
<td>1.131966</td>
</tr>
<tr>
<td>Nov 1987</td>
<td>0.223646</td>
</tr>
<tr>
<td>Dec 1987</td>
<td>-0.667762</td>
</tr>
<tr>
<td>Jan 1988</td>
<td>-1.343814</td>
</tr>
<tr>
<td>Feb 1988</td>
<td>-0.345812</td>
</tr>
<tr>
<td>Mar 1988</td>
<td>-0.860946</td>
</tr>
</tbody>
</table>

```r
> class(ts)
```

[1] "function"

The function tsp()

The function `tsp()` returns the start and end time, and also the frequency without printing the complete data of the time-series.

```r
> tsp(ts(rnorm(48), start = 1987, freq = 4))
```

[1] 1987.0 1998.8 4.0

1.6 Lists

A list is a vector. However, the contents of a list can be an object of any type and structure. It is a non-atomic object. Consequently, a list can contain another list and can be used to construct arbitrary data structures. Lists are often used for output of statistical routines in R. The output object is often a collection of parameter estimates, residuals, predicted values etc. The function `list()` has only one argument, the ... argument.

```r
> args(list)
```

function (...)

NULL

Listing 1.4: Arguments of the function list

Argument:
... objects, possibly named
For example, consider the output of the function \texttt{lsfit()} which fits a least square regression in its most simple form.

\begin{verbatim}
> x <- 1:5
> y <- x + rnorm(5, mean = 0, sd = 0.25)
> fit <- lsfit(x, y)
> fit

$coefficients
 Intercept X
-0.33954 1.15505

$residuals
[1] -0.040323 0.310736 -0.130022 -0.510874 0.370482

$intercept
[1] TRUE

$qr
$q
[1] -0.989082 3.652594 -0.061204 -0.350866 0.621679

$q
 Intercept X
[1,] -2.23607 -6.70820
[2,] 0.44721 3.16228
[3,] 0.44721 -0.19544
[4,] 0.44721 -0.51167
[5,] 0.44721 -0.82790

$qraux
[1] 1.4472 1.1208

$rank
[1] 2

$pivot
[1] 1 2

$tol
[1] 1e-07

attr("class")
[1] "qr"
\end{verbatim}

In this example the output value of \texttt{lsfit(x, y)} is assigned to object \texttt{fit}. This is a list whose first component is a vector with the intercept and the slope. The second component is a vector with the model residuals and the third component is a logical vector of length one indicating whether or not an intercept is used. The three components have the names \texttt{coef}, \texttt{residuals} and \texttt{intercept}.

The components of a list can be extracted in several ways:
• element number: \(z[1] \) means the first element of the list \(z \). It therefore returns a \texttt{list} object.

• component number: \(z[[1]] \) means the content of the first component of \(z \) (use double square brackets!).

• component name: \(z$name \) indicates the component of \(z \) with name \(name \). It retrieves the content of the element by its name.

To identify the component name the first few characters will do, for example, you can use \(z$r \) instead of \(z$residuals \). But note that using incomplete component names are highly discourage in any R code.

```r
> test <- fit$r
> test
[1] -0.040323 0.310736 -0.130022 -0.510874 0.370482
> fit$r[4]
[1] -0.51087
```

Creating lists from scratch

A list can also be constructed by using the function \texttt{list}. The names of the list components and the contents of list components can be specified as arguments of the \texttt{list} function by using the \texttt{=} character.

```r
> x1 <- 1:5
> x2 <- c(TRUE, TRUE, FALSE, FALSE, TRUE)
> myList <- list(numbers = x1, wrong = x2)
> myList
$numbers
[1] 1 2 3 4 5

$wrong
[1] TRUE TRUE FALSE FALSE TRUE
```

So the left-hand side of the \texttt{=} operator in the \texttt{list()} function is the name of the component and the right-hand side is an R object. The order of the arguments in the list function determines the order in the list that is created. In the above example the logical object ‘wrong’ is the second component of \texttt{myList}.

```r
> myList[[2]]
[1] TRUE TRUE FALSE FALSE TRUE
```

The function \texttt{names} can be used to extract the names of the list components. It is also used to change the names of list components.

```r
> names(myList)
[1] "numbers" "wrong"
```
To add extra components to a list proceed as follows:

```r
> myList[[3]] <- 1:50
> myList$test <- "hello"
> myList
$lots
[1] 1 2 3 4 5

$valid
[1] TRUE TRUE FALSE FALSE TRUE

[[3]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

$test
[1] "hello"
```

Note the difference in single square brackets and double square brackets.

```r
> myList[1]
$lots
[1] 1 2 3 4 5
> myList[[1]]
[1] 1 2 3 4 5
```

Note when single square brackets are used, the component is returned as list because it extracts the first element of a list which is a list, whereas double square brackets return the component itself of the element.

Transforming objects to a list

Many objects can be transformed to a list with the function `as.list()`. For example, vectors, matrices and data frames.

```r
> as.list(1:6)
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] 4
```
A handy function is the `str()` function, it displays the internal structure of an R object. The function can be used to see a short summary of an object.

Show the structure for Longley’s economic data set

```r
> str(longley)
'data.frame': 16 obs. of 7 variables:
$ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ... 
$ GNP       : num 234 259 258 285 329 ... 
$ Unemployed : num 236 232 368 335 210 ... 
$ Armed.Forces: num 159 146 162 165 310 ... 
$ Population: num 108 109 110 111 112 ... 
$ Employed  : num 60.3 61.1 60.2 61.2 63.2 ... 
```

Show the structure for the quarterly UK gas price series

```r
> str(UKgas)
Time-Series [1:108] from 1960 to 1987: 160.1 129.7 84.8 120.1 160.1 ... 
```
CHAPTER 2

DATA MANIPULATION

The programming language in R provides many different functions and mechanisms to manipulate and extract data. Let's look at some of those for the different data structures.

2.1 MANIPULATING VECTORS

Subsetting by positive natural numbers

A part of a vector \(x \) can be selected by a general subscripting mechanism.

\[
x[\text{subscript}]\]

The simplest example is to select one particular element of a vector, for example the first one or the last one

\[
> x <- c(6, 7, 2, 4)
> x[1]
[1] 6
> x[length(x)]
[1] 4
\]

To extract the first three numbers, type

\[
> x[1:3]
[1] 6 7 2
\]

To get a vector with the fourth, first and again the fourth element of \(x \), type

\[
> x[c(4, 1, 4)]
[1] 4 6 4
\]
One or more elements of a vector can be changed by the subscripting mechanism. To change the third element of a vector proceed as follows:

```r
> x[3] <- 4
```

To change the first three elements with the same value, type:

```r
> x[1:3] <- 4
```

The last two constructions are examples of a so-called replacement, in which the left hand side of the assignment operator is more than a simple identifier. Note also that the recycling rule applies, so the following code works (with a warning from R).

```r
> x[1:3] <- c(1, 2)
Warning message:
In x[1:3] <- c(1, 2) :
  number of items to replace is not a multiple of replacement length
```

Because the replacement vector is shorter than the vector to be replaced, its elements are recycled; the third element is just the first element again.

Subsetting by a logical vector

Subsetting a vector by logical values results in a vector with only those elements of `x` of which the logical vector has an element TRUE.

```r
> x <- c(10, 4, 6, 7, 8)
> index <- x > 9
> index
[1] TRUE FALSE FALSE FALSE FALSE
> x[index]
[1] 10
```

or directly

```r
> x[x > 9]
[1] 10
```

To change the elements of `x` which are larger than 9 to the value 9 do the following:

```r
> x[x > 9] <- 9
```

Note that the logical vector does not have to be of the same length as the vector you want to extract elements from. It will be recycled.

The recycling behavior can be handy in situation were one wants, for example, extract elements of a vector at even positions. This could be achieved by using a logical vector of length two.
2.1. Manipulating Vectors

```r
> x[c(FALSE, TRUE)]
[1] 4 7
```

Subsetting by negative natural numbers

If you use negative natural numbers in the indexing vector, all elements of `x` are selected except those that are in the index.

```r
> x <- c(1, 2, 3, 6)
> x[-(1:2)]
[1] 3 6
```

Note the subscript vector may address non-existing elements of the original vector. The result will be `NA` (Not Available). For example,

```r
> x <- c(1, 2, 3, 4, 5)
> x[7]
[1] NA
> x[1:6]
[1] 1 2 3 4 5 NA
```

The length of a vector: `length()`

The function `length()` returns the number of elements in a vector

```r
> length(x)
[1] 5
```

Summary functions

There are several summary functions for working with vectors: `max()`, `min()`, `range()`, `prod()`, `sum()`, `any()`, `all()`. These functions are all so-called generic functions. Type

```r
help(S3groupGeneric)
```

to find out more about these functions.

These functions allow us to calculate (for numerical values) the following statistics: the sum of all elements of the vector, the product, and the largest and smallest values of the vector. The range returns the minimum and maximum values of the vector together.

```r
> x <- 1:10
> c(sum = sum(x), prod = prod(x), min = min(x), max = max(x))
```
These four functions can also be used on more than one vector, in which case the sum, product, minimum, or maximum are taken over all elements of all vectors.

```r
> y <- 11:20
> sum(x, y)
[1] 210
> prod(x, y)
[1] 2.4329e+18
> max(x, y)
[1] 20
> min(x, y)
[1] 1
```

What does the function `any()` do? The function answers the question: Given a set of logical vectors, is at least one of the values true? The function `all()` is the complement of `any()`; it answers the question: Given a set of logical vectors, are all of the values true?

Cumulative vector operation

The function `cumsum()` belongs to a group of four functions which computes cumulative sums, products, `cumprod()`, and extremes, `cummin()`, `cummax()`.

Cumulating a Vector: The function `cumsum(x)` generates a vector with the same length as the input vector. The i^{th} element of the resulting vector is equal to the sum of the first i elements of the input vector.

```r
> set.seed(1848)
> x <- round(rnorm(10), 2)
> x
[1] -1.20 1.84 0.92 -0.70 1.93 -1.32 -0.97 0.18 -2.25 0.78
> cumsum(x)
[1] -1.20 0.64 1.56 2.79 1.47 0.50 0.68 -1.57 -1.11
```

1 The semicolon was used here to separate more than one command typed in on the same line.
2.1. Manipulating Vectors

Sorting and ordering vectors

Sorting a vector: To sort a vector in increasing order, use the function `sort()`\(^2\). You can also use this function to sort in decreasing order by using the argument `decrease = TRUE`.

```r
> x1 <- c(2, 6, 4, 5, 5, 8, 8, 1, 3, 0)
> length(x1)
[1] 10
> x2 <- sort(x1)
> x3 <- sort(x1, decreasing = TRUE)
```

Ordering a vector: With the function `order` you can produce a permutation vector which indicates how to sort the input vector in ascending order. If you have two vectors \(x\) and \(y\), you can sort \(x\) and permute \(y\) in such a way that the elements have the same order as the sorted vector \(x\).

```r
> x <- rnorm(10)
> y <- 1:10
> z <- order(x)
```

Sort

```r
> sort(x)
[1] -2.03190 -1.66859 -1.54659 -0.81197 -0.66099 -0.50070 -0.30437 -0.17851
[9] 0.27800 0.35339

Change the order of elements of \(y\)

```r
> y[z]
[1] 9 10 5 7 1 4 8 3 2 6

Try to figure out what the result of `x[order(x)]` is!

Reversing a vector: The function `rev` reverses the order of vector elements. `rev(sort(x))` is a sorted vector in descending order.

```r
> x <- round(rnorm(10), 2)
> rev(sort(x))
[1] 1.12 1.02 1.01 0.66 0.59 0.52 -0.42 -0.53 -0.73 -2.02
```

\(^2\)Note that `sort()` returns a new vector that contains the sorted elements of the original vector; it does not sort the original vector.
Making vectors unique

The function `unique` returns a vector which only contains the unique values of the input vector. The function `duplicated()` returns TRUE or FALSE for every element depending on whether or not that element has previously appeared in the vector.

```r
> x <- c(2, 6, 4, 5, 5, 8, 8, 1, 3, 0)
> unique(x)
[1] 2 6 4 5 8 1 3 0

> duplicated(x)
[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
```

Differencing a vector

Our last example of a vector manipulation function is the function `diff`. This returns a vector which contains the differences between the consecutive input elements.

```r
> x <- c(1, 3, 5, 8, 15)
> diff(x)
[1] 2 2 3 7
```

The resulting vector of the function `diff` is always at least one element shorter than the input vector. An additional `lag` argument can be used to specify the lag of differences to be calculated.

```r
> x <- c(1, 3, 5, 8, 15)
> diff(x, lag = 2)
[1] 4 5 10
```

So in this case with `lag`=2, the resulting vector is two elements shorter.

2.2 Manipulating Matrices

Subsetting a matrix

As with vectors, parts of matrices can be selected by the subscript mechanism. The general scheme for a matrix `x` is given by:

```r
x[subscript]
```

where subscript can take different forms.
Subsetting by rows and columns integers

A pair (rows, cols) where rows is a vector representing the row numbers and cols is a vector representing column numbers. Rows and/or columns can be empty or negative. The following examples will illustrate the different possibilities.

```r
> X <- matrix(1:36, ncol = 6)
> X[2, 6]
[1] 32
```

The third row:

```r
> X[3, ]
[1] 3 9 15 21 27 33
```

The element in row 3 and column 1 and the element in row 3 and column 5:

```r
> X[3, c(1, 5)]
[1] 3 27
```

Show X without the first column

```r
> X[, -1]
[1,] 7 13 19 25 31
[2,] 8 14 20 26 32
[3,] 9 15 21 27 33
[4,] 10 16 22 28 34
[5,] 11 17 23 29 35
[6,] 12 18 24 30 36
```

A negative pair results in a so-called minor matrix where a column and row is omitted.

```r
> X[-3, -4]
[1,] 7 13 19 25 31
[2,] 8 14 20 26 32
[3,] 10 16 22 28 34
[5,] 11 17 23 29 35
[6,] 12 18 24 30 36
```

The original matrix X remains the same, unless you assign the result back to X.

```r
> X <- X[-3, 4]
> X
[1] 19 20 22 23 24
```
As with vectors, matrix elements or parts of matrices can be changed by using the matrix subscript mechanism and the assignment operator together. To change only the element of the first row, second column:

```r
> X <- matrix(1:36, ncol = 6)
> X[1, 2] <- 5
```

To change a complete column:

```r
> X <- matrix(rnorm(100), ncol = 10)
> X[, 1] <- 1:10
```

Subsetting by a logical matrix

We can also subset a matrix by a logical matrix with the same dimension as \(X \):

```r
> X <- matrix(1:36, ncol = 6)
> Y <- X > 19
> Y

[1,] FALSE FALSE FALSE FALSE TRUE TRUE
[2,] FALSE FALSE FALSE TRUE TRUE TRUE
[3,] FALSE FALSE FALSE TRUE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE TRUE TRUE
[5,] FALSE FALSE FALSE TRUE TRUE TRUE
[6,] FALSE FALSE FALSE TRUE TRUE TRUE

> X[Y]

```

Note that the result of subscripting with a logical matrix is a vector. This mechanism can be used to replace elements of a matrix. For example, to replace all elements greater than 0 with 0:

```r
> X <- matrix(rnorm(100), ncol = 10)
> X[X > 0] <- 0
> X

[1,] -0.274190 0.000000 -1.513568 -1.464200 -0.683043 -0.181865 0.000000 0.000000 0.000000 0.000000
[2,] -0.779710 0.000000 -1.007833 -1.147460 -1.128581 -0.023738 -1.633580
[3,] 0.000000 0.000000 -0.582485 0.000000 -0.906651 -0.276996 -0.119210
[4,] -0.917990 0.000000 0.000000 -0.295510 -0.084761 -0.273663 0.000000
[5,] -0.917990 0.000000 0.000000 -0.560610 0.000000 0.000000 -0.762400
[6,] 0.000000 -0.340210 -0.142731 -0.693500 -0.264546 -0.728286 0.000000
[7,] 0.000000 0.000000 0.000000 -1.550970 -0.167526 0.000000 0.000000
[8,] 0.000000 -1.582870 0.000000 -2.096880 0.000000 0.000000 0.000000
[9,] -0.302240 -1.120210 -0.532550 -0.309300 0.000000 0.000000 -0.576240
[10,] 0.000000 -2.703920 -1.641294 -0.773410 -0.389621 0.000000 0.000000

[,8] [,9] [,10]
[1,] 0.000000 0.000000 0.000000
[2,] -0.112970 -0.111318 -0.314600
[3,] 0.000000 -0.010181 -0.569830
```
2.2. Manipulating Matrices

\[
\begin{align*}
[4,] &\ -0.92099 \ -1.680854 \ 0.00000 \\
[5,] &\ 0.00000 \ -1.453314 \ -0.54376 \\
[6,] &\ 0.00000 \ -1.599849 \ 0.00000 \\
[7,] &\ -1.90633 \ -0.401601 \ 0.00000 \\
[8,] &\ 0.00000 \ -2.177284 \ -0.23241 \\
[9,] &\ -0.96684 \ 0.000000 \ -1.36440 \\
[10,] &\ 0.00000 \ -0.141607 \ -0.40021
\end{align*}
\]

Subsetting with two columns

We can also subset a matrix \(X\) with two columns. A row of \(X\) consists of two numbers, each row of \(X\) selects a matrix element of \(X\). The result is a vector with the selected elements from \(X\).

\[
\begin{align*}
&> \ X \leftarrow \text{matrix}(1:36, \ ncol = 6) \\
&> \ X \\
&\begin{array}{llllll}
[1,] & 1 & 7 & 13 & 19 & 25 & 31 \\
[2,] & 2 & 8 & 14 & 20 & 26 & 32 \\
[3,] & 3 & 9 & 15 & 21 & 27 & 33 \\
[4,] & 4 & 10 & 16 & 22 & 28 & 34 \\
[5,] & 5 & 11 & 17 & 23 & 29 & 35 \\
[6,] & 6 & 12 & 18 & 24 & 30 & 36 \\
\end{array} \\
&> \ \text{INDEX} \leftarrow \text{cbind}(c(1, 2, 5), c(3, 4, 4)) \\
&> \ \text{INDEX} \\
&\begin{array}{ll}
[1,] & 1 \ 3 \\
[2,] & 2 \ 4 \\
[3,] & 5 \ 4 \\
\end{array} \\
&> \ X[\text{INDEX}] \\
&\begin{array}{l}
[1] \ 13 \ 20 \ 23
\end{array}
\end{align*}
\]

Subsetting by a single number or a vector of numbers

What happens when we subset a matrix by a single number or one vector of numbers? In this case the matrix is treated as a vector where all the columns are stacked.

\[
\begin{align*}
&> \ X \leftarrow \text{matrix}(1:36, \ ncol = 6) \\
&> \ X[3] \\
&\begin{array}{l}
[1] \ 3
\end{array} \\
&> \ X[9] \\
&\begin{array}{l}
[1] \ 9
\end{array} \\
&> \ X[36] \\
&\begin{array}{l}
[1] \ 36
\end{array} \\
&> \ X[21:30] \\
&\begin{array}{l}
[1] \ 21 \ 22 \ 23 \ 24 \ 25 \ 26 \ 27 \ 28 \ 29 \ 30
\end{array}
\end{align*}
\]
2.3 Manipulating Data Frames

Although a data frame can be considered as a vector of lists, it shares common subsetting methods as matrices. But data frames also offer a few extra possibilities which will be considered in the following.

Extracting data from data frames

As an example let us consider Longley’s US Economic data set

```
> longley
    GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1947   83.0  234.29   235.6      159.0    107.61  1947       60.323
1948   88.5  259.43   232.5      145.6    108.63  1948       61.122
1949   88.2  258.05   368.2      161.6    109.77  1949       60.171
1950   89.5  284.60   335.1      165.0    110.93  1950       61.187
1951   96.2  328.98   209.9      309.9    112.08  1951       63.221
1952   98.1  347.00   193.2      359.4    113.27  1952       63.639
1953   99.0  365.38   187.0      354.7    115.09  1953       64.989
1954  100.0  363.11   357.8      335.0    116.22  1954       63.761
1955  101.2  397.47   290.4      304.8    117.39  1955       66.019
1956  104.6  419.18   282.2      285.7    118.73  1956       67.857
1957  108.4  442.77   293.6      279.8    120.44  1957       68.169
1958  110.8  444.55   468.1      263.7    121.95  1958       66.513
1959  112.6  482.70   381.3      255.2    123.37  1959       68.655
1960  114.2  502.60   393.1      251.4    125.37  1960       69.564
1961  115.7  518.17   480.6      257.2    127.85  1961       69.331
1962  116.9  554.89   400.7      282.7    130.08  1962       70.551
```

To extract the column names of the data frame use the function `names()`

```
> names(longley)
[1] "GNP.deflator" "GNP" "Unemployed" "Armed.Forces" "Population" "Year" "Employed"
```

To select a specific column from a data frame use the $ symbol or double square brackets and quotes:

```
> GNP <- longley$GNP
> GNP
[1] 234.29 259.43 258.05 284.60 328.98 347.00 365.38 363.11 397.47 419.18
[11] 442.77 444.55 482.70 502.60 518.17 554.89
> GNP <- longley["GNP"]
> GNP
[1] 234.29 259.43 258.05 284.60 328.98 347.00 365.38 363.11 397.47 419.18
[11] 442.77 444.55 482.70 502.60 518.17 554.89
> class(GNP)
[1] "numeric"
```

The object GNP is a numeric vector. If you want the result to be a data frame then use single square brackets.
> GNP <- longley["GNP"]
> GNP

 GNP
1947 234.29
1948 259.43
1949 258.05
1950 284.60
1951 328.98
1952 347.00
1953 365.38
1954 363.11
1955 397.47
1956 419.18
1957 442.77
1958 444.55
1959 482.70
1960 502.60
1961 518.17
1962 554.89

> class(GNP)
[1] "data.frame"

When using single brackets it is possible to select more than one column from a data frame. Note that the result is again a data frame

> longley[, c("GNP", "Population")]

 GNP Population
1947 234.29 107.61
1948 259.43 108.63
1949 258.05 109.77
1950 284.60 110.93
1951 328.98 112.08
1952 347.00 113.27
1953 365.38 115.09
1954 363.11 116.22
1955 397.47 117.39
1956 419.18 118.73
1957 442.77 120.44
1958 444.55 121.95
1959 482.70 123.37
1960 502.60 125.37
1961 518.17 127.85
1962 554.89 130.08

To select a specific row by name of the data frame use the following R code

> Year1960 <- longley["1960",]
> Year1960

 GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1960 114.2 502.6 393.1 251.4 125.37 1960 69.564

> class(Year1960)
[1] "data.frame"
The result is a data frame with one row. To select more rows use a vector of names:

```r
> longley[c("1955", "1960"), ]
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1955 101.2 397.47 290.4 304.8 117.39 1955 66.019
1960 114.2 502.60 393.1 251.4 125.37 1960 69.564
```

If the given row name does not exist, R will return a row with NA’s.

```r
> longley[c("1955", "1960", "1965"), ]
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1955 101.2 397.47 290.4 304.8 117.39 1955 66.019
1960 114.2 502.60 393.1 251.4 125.37 1960 69.564
NA NA NA NA NA NA NA NA
```

Rows from a data frame can also be selected using row numbers.

```r
> longley[5:10, ]
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1951 96.2 328.98 209.9 309.9 112.08 1951 63.221
1952 98.1 347.00 193.2 359.4 113.27 1952 63.639
1953 99.0 365.38 187.0 354.7 115.09 1953 64.989
1954 100.0 363.11 357.8 335.0 116.22 1954 63.761
1955 101.2 397.47 290.4 304.8 117.39 1955 66.019
1956 104.6 419.18 282.2 285.7 118.73 1956 67.857
```

The first few rows or the last few rows can be extracted by using the functions head or tail.

```r
> head(longley, 3)
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1947 83.0 234.29 235.6 159.0 107.61 1947 60.323
1948 88.5 259.43 232.5 145.6 108.63 1948 61.122
1949 88.2 258.05 368.2 161.6 109.77 1949 60.171
```

```r
> tail(longley, 2)
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1961 115.7 518.17 480.6 257.2 127.85 1961 69.331
1962 116.9 554.89 400.7 282.7 130.08 1962 70.551
```

To subset specific cases from a data frame you can also use a logical vector. When you provide a logical vector in a data frame subscript, only the cases which correspond to a TRUE are selected. Suppose you want to get all stock exchanges from the Longley data frame that have a GNP of over 350. First create a logical vector index:

```r
> index <- longley$GNP > 350
> index
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE
```
Now use this vector to subset the data frame:

```r
> longley[index, ]
```

<table>
<thead>
<tr>
<th>GNP.deflator</th>
<th>GNP</th>
<th>Unemployed</th>
<th>Armed.Forces</th>
<th>Population</th>
<th>Year</th>
<th>Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>99.0</td>
<td>365.38</td>
<td>187.0</td>
<td>354.7</td>
<td>115.09</td>
<td>1953</td>
</tr>
<tr>
<td>1954</td>
<td>100.0</td>
<td>363.11</td>
<td>357.8</td>
<td>335.0</td>
<td>116.22</td>
<td>1954</td>
</tr>
<tr>
<td>1955</td>
<td>101.2</td>
<td>397.47</td>
<td>290.4</td>
<td>304.8</td>
<td>117.39</td>
<td>1955</td>
</tr>
<tr>
<td>1956</td>
<td>104.6</td>
<td>419.18</td>
<td>282.2</td>
<td>285.7</td>
<td>118.73</td>
<td>1956</td>
</tr>
<tr>
<td>1957</td>
<td>108.4</td>
<td>442.77</td>
<td>293.6</td>
<td>279.8</td>
<td>120.44</td>
<td>1957</td>
</tr>
<tr>
<td>1958</td>
<td>110.8</td>
<td>444.55</td>
<td>468.1</td>
<td>263.7</td>
<td>121.95</td>
<td>1958</td>
</tr>
<tr>
<td>1959</td>
<td>112.6</td>
<td>482.70</td>
<td>381.3</td>
<td>255.2</td>
<td>123.37</td>
<td>1959</td>
</tr>
<tr>
<td>1960</td>
<td>114.2</td>
<td>502.60</td>
<td>393.1</td>
<td>251.4</td>
<td>125.37</td>
<td>1960</td>
</tr>
<tr>
<td>1961</td>
<td>115.7</td>
<td>518.17</td>
<td>480.6</td>
<td>257.2</td>
<td>127.85</td>
<td>1961</td>
</tr>
<tr>
<td>1962</td>
<td>116.9</td>
<td>554.89</td>
<td>400.7</td>
<td>282.7</td>
<td>130.08</td>
<td>1962</td>
</tr>
</tbody>
</table>

A handy alternative is the function `subset`, which returns the subset as a data frame. The first argument is the data frame, and the second argument is a logical expression. In this expression you use the variable names without preceding them with the name of the data frame, as in the above example.

```r
> subset(longley, GNP > 350 & Population > 110)
```

<table>
<thead>
<tr>
<th>GNP.deflator</th>
<th>GNP</th>
<th>Unemployed</th>
<th>Armed.Forces</th>
<th>Population</th>
<th>Year</th>
<th>Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>99.0</td>
<td>365.38</td>
<td>187.0</td>
<td>354.7</td>
<td>115.09</td>
<td>1953</td>
</tr>
<tr>
<td>1954</td>
<td>100.0</td>
<td>363.11</td>
<td>357.8</td>
<td>335.0</td>
<td>116.22</td>
<td>1954</td>
</tr>
<tr>
<td>1955</td>
<td>101.2</td>
<td>397.47</td>
<td>290.4</td>
<td>304.8</td>
<td>117.39</td>
<td>1955</td>
</tr>
<tr>
<td>1956</td>
<td>104.6</td>
<td>419.18</td>
<td>282.2</td>
<td>285.7</td>
<td>118.73</td>
<td>1956</td>
</tr>
<tr>
<td>1957</td>
<td>108.4</td>
<td>442.77</td>
<td>293.6</td>
<td>279.8</td>
<td>120.44</td>
<td>1957</td>
</tr>
<tr>
<td>1958</td>
<td>110.8</td>
<td>444.55</td>
<td>468.1</td>
<td>263.7</td>
<td>121.95</td>
<td>1958</td>
</tr>
<tr>
<td>1959</td>
<td>112.6</td>
<td>482.70</td>
<td>381.3</td>
<td>255.2</td>
<td>123.37</td>
<td>1959</td>
</tr>
<tr>
<td>1960</td>
<td>114.2</td>
<td>502.60</td>
<td>393.1</td>
<td>251.4</td>
<td>125.37</td>
<td>1960</td>
</tr>
<tr>
<td>1961</td>
<td>115.7</td>
<td>518.17</td>
<td>480.6</td>
<td>257.2</td>
<td>127.85</td>
<td>1961</td>
</tr>
<tr>
<td>1962</td>
<td>116.9</td>
<td>554.89</td>
<td>400.7</td>
<td>282.7</td>
<td>130.08</td>
<td>1962</td>
</tr>
</tbody>
</table>

Adding columns to a data frame

The function `cbind` can be used to add additional columns to a data frame. For example, the ratio of the GNP and the population

```r
> gnpPop <- round(longley[, "GNP"] / longley[, "Population"], 2)
> longley <- cbind(longley, GNP.POP = gnpPop)
> longley
```

<table>
<thead>
<tr>
<th>GNP.deflator</th>
<th>GNP</th>
<th>Unemployed</th>
<th>Armed.Forces</th>
<th>Population</th>
<th>Year</th>
<th>Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>83.0</td>
<td>234.29</td>
<td>235.6</td>
<td>159.0</td>
<td>107.61</td>
<td>1947</td>
</tr>
<tr>
<td>1948</td>
<td>88.5</td>
<td>259.43</td>
<td>232.5</td>
<td>145.6</td>
<td>108.63</td>
<td>1948</td>
</tr>
<tr>
<td>1949</td>
<td>88.2</td>
<td>258.05</td>
<td>368.2</td>
<td>161.6</td>
<td>109.77</td>
<td>1949</td>
</tr>
<tr>
<td>1950</td>
<td>89.5</td>
<td>284.60</td>
<td>335.1</td>
<td>165.0</td>
<td>118.93</td>
<td>1950</td>
</tr>
<tr>
<td>1951</td>
<td>96.2</td>
<td>328.98</td>
<td>309.9</td>
<td>359.4</td>
<td>113.27</td>
<td>1952</td>
</tr>
<tr>
<td>1952</td>
<td>98.1</td>
<td>347.00</td>
<td>193.2</td>
<td>359.4</td>
<td>115.09</td>
<td>1953</td>
</tr>
<tr>
<td>1953</td>
<td>100.0</td>
<td>363.11</td>
<td>357.8</td>
<td>335.0</td>
<td>116.22</td>
<td>1954</td>
</tr>
<tr>
<td>1954</td>
<td>101.2</td>
<td>397.47</td>
<td>290.4</td>
<td>304.8</td>
<td>117.39</td>
<td>1955</td>
</tr>
<tr>
<td>Year</td>
<td>Population</td>
<td>Armed Forces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1947</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948</td>
<td>2.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>2.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>3.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>3.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>3.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>3.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>3.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>4.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>4.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>4.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The function `cbind` can also be used on two or more data frames.

Combining data frames

Use the function `rbind` to combine (or stack) two or more data frames.

Merging data frames

Two data frames can be merged into one data frame using the function `merge`. If the original data frames contain identical columns, these columns only appear once in the merged data frame. Consider the following two data frames:

```r
> long1 <- longley[1:6, c("Year", "Population", "Armed.Forces")]
> long1
```

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Armed.Forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>107.61</td>
<td>159.0</td>
</tr>
<tr>
<td>1948</td>
<td>108.63</td>
<td>145.6</td>
</tr>
<tr>
<td>1949</td>
<td>109.77</td>
<td>161.6</td>
</tr>
<tr>
<td>1950</td>
<td>110.93</td>
<td>165.0</td>
</tr>
<tr>
<td>1951</td>
<td>112.08</td>
<td>309.9</td>
</tr>
<tr>
<td>1952</td>
<td>113.27</td>
<td>359.4</td>
</tr>
</tbody>
</table>

In database terminology, this is the join operation.
2.3. Manipulating Data Frames

```r
> long2 <- longley[1:6, c("Year", "GNP", "Unemployed")]
> long2
          Year    GNP Unemployed
1947 1947    234.29     235.6
1948 1948    259.43     232.5
1949 1949    258.05     368.2
1950 1950    284.60     335.1
1951 1951    328.98     209.9
1952 1952    347.00     193.2
```

By default the `merge` function leaves out rows that were not matched. Consider the following data sets:

```r
> quotes <- data.frame(date = 1:100, quote = runif(100))
> testfr <- data.frame(date = c(5, 7, 9, 110), position = c(45, 89, 14, 90))
```

To extend the data frame `testfr` with the right quote data from the data frame `quotes`, and to keep the last row of `testfr` for which there is no quote, use the following code.

```r
> testfr <- merge(quotes, testfr, all.y = TRUE)
> testfr
date quote position
1   5 0.70654       45
2   7 0.99467       89
3   9 0.11259       14
4 110  NA          90
```

For more complex examples see the help file of the function `merge()`.

Aggregating data frames

The function `aggregate` is used to aggregate data frames. It splits the data frame into groups and applies a function on each group. The first argument is the data frame, the second argument is a list of grouping variables, the third argument is a function that returns a scalar. A small example:

```r
> gr <- c("A", "A", "B", "B")
> x <- c(1, 2, 3, 4)
> y <- c(4, 3, 2, 1)
> myf <- data.frame(gr, x, y)
> aggregate(myf, list(myf$gr), mean)
```
R will apply the function on each column of the data frame. This means also on the grouping column `gr`. This column has the type factor, and numerical calculations cannot be performed on factors, hence the NA’s. You can leave out the grouping columns when calling the `aggregate()` function.

```r
> aggregate(myf[, c("x", "y")], list(myf$gr), mean)
```

<table>
<thead>
<tr>
<th>Group.1</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A 1.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>B 3.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Stacking columns of data frames

The function `stack()` can be used to stack columns of a data frame into one column and one grouping column. Consider the following example:

So, by default all the columns of a data frame are stacked. Use the `select` argument to stack only certain columns.

```r
stack(df, select = c("M3", "GDP"))
```

2.4 Working with Attributes

Vectors, matrices and other objects in general may have attributes. These are other objects attached to the main object. Use the function `attributes` to get a list of all the attributes of an object.

```r
> set.seed(4711)
> x <- rnorm(12)
> attributes(x)
NULL
```

In the above example the vector `x` has no attributes. You can either use the function `attr` or the function `structure` to attach an attribute to an object.

```r
> attr(x, "seed") <- "seed = 4711"
> x
[1] 1.819735 1.370440 1.196318 -0.406879 -0.610979 -1.508912 0.817549
[8] -0.964668 -0.044522 0.474355 -0.982166 -1.572111
attr("seed")
[1] "seed = 4711"
> attr(x, "seed")
```
2.4. **Working with Attributes**

The first argument of the function `attr()` is the object, the second argument is the name of the attribute. The expression on the right hand side of the assignment operator will be the attribute value. Use the `structure()` function to attach more than one attribute to an object.

```r
> x <- structure(x, atr1 = length(x), atr2 = "length")
> x
[1] 1.819735 1.379440 1.196318 -0.406879 -0.610979 -1.508912 0.817549
[8] -0.964668 -0.044522 0.474355 -0.982166 -1.572111
attr("seed")
[1] "seed = 4711"
attr("atr1")
[1] 12
attr("atr2")
[1] "length"
> attr(x, "seed")
[1] "seed = 4711"
> attr(x, "atr1")
[1] 12
> attr(x, "atr2")
[1] "length"
```

When an object is printed, the attributes (if any) are printed as well. To extract an attribute from an object use the functions `attributes()` or `attr()`. The function `attributes()` returns a list of all the attributes from which you can extract a specific component.

```r
> attributes(x)
$seed
[1] "seed = 4711"

$satr1
[1] 12

$satr2
[1] "length"
```

In order to get the description attribute of `x` use:

```r
> attributes(x)$seed
[1] "seed = 4711"
```

Or type in the following construction:

```r
> attr(x, "seed")
[1] "seed = 4711"
```
We mentioned earlier that matrices are just vectors with a dimension attribute. We can know inspect this attribute and understand why we can also create matrices from vectors by using the `dim()` function.

```r
> m <- matrix(1:4, ncol = 2)
> attributes(m)
$dim
[1] 2 2
```

```r
elements <- 1:4
> dim(elements) <- c(2, 2)
> attributes(elements)
$dim
[1] 2 2
```

2.5 **Manipulating Character Strings**

There are several functions in R to manipulate or get information from character objects.

The functions `nchar()`, `substring()` and `paste()`

```r
> charvector <- c("1970 | 1,003.2 | 4.11 | 6.21 Mio", "1975 | 21,034.6 | 5.31 | 7.11 Mio", "1980 | 513.2 | 4.79 |7.13 Mio")
> charvector
[1] "1970 | 1,003.2 | 4.11 | 6.21 Mio"  "1975 | 21,034.6 | 5.31 | 7.11 Mio"  "1980 | 513.2 | 4.79 |7.13 Mio"
```

The function `nchar()` returns the length of a character object, for example:

```r
> nchar(charvector)
[1] 32 34 29
```

The function `substring()` returns a substring of a character object. For example:

```r
> years <- substring(charvector, first = 1, last = 4)
> years
```

The function `paste()` will paste two or more character objects. For example, to create a character vector with: "Year-12-31"

```r
> paste(years, "12", "31", sep = ":")
[1] "1970-12-31" "1975-12-31" "1980-12-31"
```

The argument `sep` is used to specify the separating symbol between the two character objects. Use `sep = ""` for no space between the character objects.
2.5. Manipulating Character Strings

Finding patterns in character objects

The functions `regexpr()` and `grep()` can be used to find specific character strings in character objects. The functions use so-called regular expressions, a handy format to specify search patterns. See the help page for `regexpr()` to find out more about regular expressions.

Let's extract the row names from our Longley data frame.

```r
> longleyNames <- names(longley)
```

We want to know if a string in `longleyNames` contains the pattern "GNP" and if this is true we want to know the column numbers. To do this we can use the function `grep()`:

```r
> index <- grep("GNP", longleyNames)
> index
[1] 1 2 8
```

As we can see from the output, elements 1, 2, 8 of the `longleyNames` vector are names containing the string 'GNP', which is confirmed by a quick check:

```r
> longleyNames[index]
[1] "GNP.deflator"  "GNP"   "GNP.POP"
```

We can also extract all names starting with the letter ‘G’, using a regular expression:

```r
> index <- grep("^G", longleyNames)
> longleyNames[index]
[1] "GNP.deflator"  "GNP"   "GNP.POP"
```

To find patterns in texts you can also use the `regexpr()` function. This function also makes use of regular expressions, but it returns more information than `grep`.

```r
> gnpMatch <- regexpr("GNP", longleyNames)
> gnpMatch
[1] 1 1 -1 -1 -1 -1 -1 1
attr("match.length")
[1] 3 3 -1 -1 -1 -1 -1 3
```

The result of `regexpr()` is a numeric vector with a `match.length` attribute. A minus one means no match was found, a positive number means a match was found, with the `match.length` attribute indicating the length of the matching string. In our example we see that all but the elements 3,4,5,6 and 7 are equal to one, which means that GNP is part of these column names. Again, a quick check:

```r
> longleyNames[index]
```
If character vectors become too long to see the match quickly, use the following trick:

```r
> index <- 1:length(longleyNames)
> index[gnpMatch > 0]
[1] 1 2 8
```

The result of the function `regexpr()` contains the attribute `match.length`, which gives the length of the matched text. In the above example all matched strings consist of 3 characters. This attribute can be used together with the function `substring()` to extract the found pattern from the character object.

Consider the following example, which uses a regular expression, the `match.length` attribute, and the function `substring()` to extract the numeric part and character part of a character vector.

```r
> x <- c("10 Sept", "Oct 9th", "Jan 2", "4th of July")
> w <- regexpr("[0-9]+", x)
```

The regular expression "[0-9]+" matches an integer.

```r
> w
[1] 1 5 5 1
attr("match.length")
[1] 2 1 1 1
> attr(w, "match.length")
[1] 2 1 1 1
```

- The 1 means there is a match on position 1 of "10 Sept"
- the 5 means there is a match on position 5 of "Oct 9th"
- the 5 means there is a match on position 5 of "Jan 2"
- the 1 means there is a match on position 1 of "4th of July".

In the attribute `match.length` the 2 indicates the length of the match in "10 Sept".

Now we can use the `substring()` function to extract the integers. `substring()` takes a character vector, start and stop values as arguments. Our start values are given by `w`, and to get the stop values, we simply need to add the `match.length` to the start values, and subtract 1. Note that the result of the `substring` function has the type character. To convert that to numeric, use the `as.numeric` function:

```r
> as.numeric(substring(x, w, w + attr(w, "match.length") - 1))
[1] 10 9 2 4
```
2.5. Manipulating Character Strings

Replacing characters

The functions `sub()` and `gsub()` are used to replace a certain pattern in a character object with another pattern.

```r
gsub(".POP", "/Population", longleyNames)
```

```r
[1] "GNP.deflator" "GNP" "Unemployed" "Armed.Forces"
[5] "Population" "Year" "Employed" "GNP/Population"
```

Note that by default, the `pattern` argument is a regular expression. If you want to replace a certain string it may be handy to use the `fixed` argument as well.

```r
mychar <- c("mytest", "abctestabc", "test.po.test")
gsub(pattern = "test", replacement = ", x = mychar, fixed = TRUE)
```

```r
[1] "my" "abcabc" ".po."
```

Splitting character strings

A character string can be split using the function `strsplit()`. The two main arguments are `x` and `split`. The function returns the split results in a list, each list component is the split result of an element of `x`.

```r
charvector <- c("1970 | 1,003.2 | 4.11 | 6.21 Mio", "1975 | 21,034.6 | 5.31 | 7.11 Mio",
               "1980 | 513.2 | 4.79 | 7.13 Mio")
mysplit <- strsplit(x = charvector, split = "\|")
```

```r
mysplit
```

```r
[[1]]
[1] "1970 " " 1,003.2 " " 4.11 " " 6.21 Mio"

[[2]]
[1] "1975 " " 21,034.6 " " 5.31 " " 7.11 Mio"

[[3]]
[1] "1980 " " 513.2 " " 4.79 " " 7.13 Mio"
```

Now extract the third column und convert to numerical values

```r
unlisted <- unlist(mysplit)
```

```r
unlisted
```

```r
[1] "1970 " " 1,003.2 " " 4.11 " " 6.21 Mio" "1975 "
[6] " 21,034.6 " " 5.31 " " 7.11 Mio" "1980 " " 513.2 "
```

```r
as.numeric(unlisted[seq(3, length(unlisted), by = 4)])
```

```r
[1] 4.11 5.31 4.79
```
2.6 Creating Factors from Continuous Data

The function `cut()` can be used to create factor variables from continuous variables. The first argument `x` is the continuous vector and the second argument `breaks` is a vector of breakpoints, specifying intervals. For each element in `x` the function `cut()` returns the interval as specified by `breaks` that contains the element. As an example, let us break the average daily turnover of the stock markets into logarithmic equidistant units.

```r
> GNP <- longley[, "GNP"]
> breaks <- (2:6) * 100
> cut(x = GNP, breaks)
[1] (200,300] (200,300] (200,300] (200,300] (300,400] (300,400] (300,400] [8] (300,400] (300,400] (400,500] (400,500] (400,500] (400,500] (500,600] [15] (500,600] (500,600] Levels: (200,300] (300,400] (400,500] (500,600]
```

The function `cut()` returns a vector of type `factor`, with each element of this vector showing the interval which corresponds to the element of the original vector. If only one number is specified for the argument `breaks`, that number is used to divide `x` into intervals of equal length.

```r
> cut(x = GNP, breaks = 3)
```

The names of the different levels are created automatically by R, and they have the form (a,b]. You can change this by specifying an extra `labels` argument.

```r
> Levels <- cut(GNP, breaks = 3, labels = c("low", "medium", "high"))
> Levels
Levels: low medium high
> class(Levels)
[1] "factor"
```

```r
> data.frame(GNP = longley[, "GNP"], Level = as.vector(Levels))
   GNP Level
1 234.29  low
2 259.43  low
3 258.05  low
4 284.60  low
5 328.98  low
6 347.00  medium
7 365.38  medium
8 363.11  medium
```
2.6. Creating Factors from Continuous Data

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>397.47</td>
<td>medium</td>
</tr>
<tr>
<td>10</td>
<td>419.18</td>
<td>medium</td>
</tr>
<tr>
<td>11</td>
<td>442.77</td>
<td>medium</td>
</tr>
<tr>
<td>12</td>
<td>444.55</td>
<td>medium</td>
</tr>
<tr>
<td>13</td>
<td>482.70</td>
<td>high</td>
</tr>
<tr>
<td>14</td>
<td>502.60</td>
<td>high</td>
</tr>
<tr>
<td>15</td>
<td>518.17</td>
<td>high</td>
</tr>
<tr>
<td>16</td>
<td>554.89</td>
<td>high</td>
</tr>
</tbody>
</table>
CHAPTER 3

IMPORTING AND EXPORTING DATA

One of the first things you want to do in a statistical data analysis system is to import data and to save the results. R provides a few methods to import and export data. These are the subject of this chapter.

3.1 WRITING TO TEXT FILES

We will start by writing some data to a text file, and then, later, we will import the data from this file.

Suppose we have the following text

(C) Alabini AG
Date: 18-05-2009
Comments: Class III Products
ProductID, Price, Quality, Company
23851, 1245.30, A, Mercury Ltd
3412, 941.40, BB, Flury SA
12184, 1499.00, AA, Inkoa Holding

which we want to write to a file using the R function write().

> args(write)
function (x, file = "data", ncolumns = if (is.character(x)) 1 else 5,
append = FALSE, sep = " ")
NULL

The first argument x is the data to be written to the file, the second argument file is the path, or a character string naming the file to write to, ncolumns the number of columns to write the data in. The append argument, if set to TRUE, specifies whether the data x are appended to the connection or not, and the sep argument specifies the string used to separate the columns.

> headerLines <- c("(C) Alabini AG", "Date: 18-05-2009", "Comment: Class III Products")
> recordLines <- c("ProductID, Price, Quality, Company", " 23851, 1245.30, A, Mercury Ltd", " 3412, 941.40, BB, Flury SA", " 12184, 1499.00, AA, Inkoa Holding")

> file <- "alabini.txt"
> write(headerLines, file)
> write(recordLines, file, append = TRUE)

if the file name is empty, file = "", the write() prints to the standard output connection, i.e. the console:

> write(c(headerLines, recordLines), file = "")

(C) Alabini AG
Date: 18-05-2009
Comment: Class III Products
ProductID, Price, Quality, Company
23851, 1245.30, A, Mercury Ltd
3412, 941.40, BB, Flury SA
12184, 1499.00, AA, Inkoa Holding

3.2 Reading from a Text File with scan()

The function scan() reads a text file element by element. This can be, for example, word by word or line by line.

> args(scan)
function (file = "", what = double(0), nmax = -1, n = -1, sep = "", quote = if (identical(sep, "\n")) "" else ""\", dec = ".", skip = 0, nlines = 0, na.strings = "NA", flush = FALSE, fill = FALSE, strip.white = FALSE, quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE, comment.char = "", allowEscapes = FALSE, encoding = "unknown")
NULL

Listing 3.1: Selected arguments for the function scan

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>name of a file to read data values from</td>
</tr>
<tr>
<td>what</td>
<td>type of what gives the type of data to be read</td>
</tr>
<tr>
<td>nmax</td>
<td>maximum number of data values to be read</td>
</tr>
<tr>
<td>n</td>
<td>number of data values to be read</td>
</tr>
<tr>
<td>sep</td>
<td>what to read as delimited input fields</td>
</tr>
<tr>
<td>quote</td>
<td>quoting characters as a single character string or NULL</td>
</tr>
<tr>
<td>dec</td>
<td>decimal point character</td>
</tr>
<tr>
<td>skip</td>
<td>number of lines to skip before beginning to read</td>
</tr>
<tr>
<td>nlines</td>
<td>if positive, maximum number of lines to be read</td>
</tr>
</tbody>
</table>

By default the function expects objects of type double to be read in. In our example we have to change the argument what to character(0).
> scan("alabini.txt", what = character(0))
[1] "(C)" "Alabini" "AG" "Date:" "18-05-2009"
[21] "BB," "Flury" "SA" "12184," "1499.00,"
[26] "AA," "Inkoa" "Holding"

What we get is not what we wanted. We have still to specify the field separator to be set to newlines

> scan("alabini.txt", what = character(0), sep = "\n")
[1] "(C) Alabini AG"
[2] "Date: 18-05-2009"
[3] "Comment: Class III Products"
[5] " 23851, 1245.30, A, Mercury Ltd"
[7] " 12184, 1499.00, AA, Inkoa Holding"

3.3 Reading from a Text File with readLines()

To read lines from a text file, we can also use the function readLines(). The function reads some or all text lines from a connection and assumes text lines and a newline character at the end of each line by default.

> args(readLines)
function (con = stdin(), n = -1L, ok = TRUE, warn = TRUE, encoding = "unknown")
NULL

Listing 3.2: Selected Arguments for the Function readLines()

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>con</td>
<td>a connection object or a character string</td>
</tr>
<tr>
<td>n</td>
<td>an integer, the (maximal) number of lines to read</td>
</tr>
<tr>
<td>encoding</td>
<td>encoding to be assumed for input strings</td>
</tr>
</tbody>
</table>

Calling readLines() on our example returns:

> readLines("alabini.txt")
[1] "(C) Alabini AG"
[2] "Date: 18-05-2009"
[3] "Comment: Class III Products"
[5] " 23851, 1245.30, A, Mercury Ltd"
[7] " 12184, 1499.00, AA, Inkoa Holding"
Owner: DAWSON FRANCE (diane.gely@dawson.fr) @ 109.2.242.246

46

IMPORTING AND EXPORTING DATA

3.4

READING FROM A TEXT FILE WITH read.table()

If we want to import just the data part as a data frame, we can use the function read.table() and skip the header lines. The function has a whole
bundle of arguments, e.g. to specify the header, the column separator, the
number of lines to skip, the data types of the columns, etc.
> args(read.table)
function (file, header = FALSE, sep = "", quote = "\"'", dec = ".",
row.names, col.names, as.is = !stringsAsFactors, na.strings = "NA",
colClasses = NA, nrows = -1, skip = 0, check.names = TRUE,
fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), fileEncoding = "",
encoding = "unknown")
NULL

LISTING 3.3: SELECTED ARGUMENTS FOR THE FUNCTION read.table()
Argument:
file

the name of the file can also be a URL

sep

the field separator character

quote

the set of quoting characters

dec

the character used for decimal points

row.names

a vector of row names

col.names

a vector of optional names for the variables

colClasses

vector of classes to be assumed for the columns

nrows

maximum number of rows to read in

skip

number of lines to skip before beginning to read

stringsAsFactors should character vectors be converted to factors?

The function reads a file in table format and creates a data frame from it,
with cases corresponding to rows and variables to columns in the file.
Now let us read in our example data file. Remember to skip the first three
lines, set the header to true and set the field separator to a comma.
> alabini <- read.table("alabini.txt", skip = 3, header = TRUE,
sep = ",")
> alabini
ProductID
1
2
3

Price

Quality

Company

23851 1245.3

A

Mercury Ltd

941.4

BB

Flury SA

12184 1499.0

3412

AA

Inkoa Holding

> class(alabini)
[1] "data.frame"

The returned object from the function read.table() is a data.frame, but
what are the classes of the columns?


3.4. Reading from a Text File with `read.table()`

```r
> Classes <- c(class(alabini[, 1]), class(alabini[, 2]), class(alabini[, 3]), class(alabini[, 4]))
> names(Classes) = names(alabini)
> Classes

ProductID      Price      Quality    Company
"integer"     "numeric"    "factor"    "factor"
```

The first column is an object of class integer, the second of class numeric and the last two columns are factors.

Character versus factor input columns

By default, R converts character data in text files into the type factor. In the above example, the third and fourth columns are factors. If you want to keep character data as character data in R, use the `stringsAsFactors` argument, and set it to FALSE.

```r
> alabini <- read.table("alabini.txt", skip = 3, header = TRUE, sep = ",", stringsAsFactors = FALSE)
> Classes <- c(class(alabini[, 1]), class(alabini[, 2]), class(alabini[, 3]), class(alabini[, 4]))
> names(Classes) = names(alabini)
> Classes

ProductID      Price      Quality    Company
"numeric"     "numeric"    "factor"    "character"
```

Specifying the input classes of columns

To specify that certain columns are characters and other columns are not you can use the `colClasses` argument and provide the type for each column. As an example, we want use the quality as a factor variable and the company names as characters.

```r
> alabini <- read.table("alabini.txt", skip = 3, sep = ",", header = TRUE, stringsAsFactors = FALSE, colClasses = c("numeric", "numeric", "factor", "character"))
> Classes <- c(class(alabini[, 1]), class(alabini[, 2]), class(alabini[, 3]), class(alabini[, 4]))
> names(Classes) = names(alabini)
> Classes

ProductID      Price      Quality    Company
"numeric"     "numeric"    "factor"    "character"
```
Reading quoted strings from input

There is an advantage in using `colClasses`, especially when the data set is large. If you don’t use `colClasses` then during a data import, R will store the data as character vectors before deciding what to do with them. Character strings in a text files may be quoted. To import such text files use the `quote` argument. Suppose we have the following comma separated text file that we want to read.

```r
headerLines <- c("(C) Alabini AG", "Date: 18-05-2009", "Comment: Class III Products")

recordLines <- c("ProductID, Price, Quality, Company",
                 "23851, 1245.30, A, 'Mercury Ltd'",
                 "3412, 941.40, BB, 'Flury SA'",
                 "12184, 1499.00, AA, 'Inkoa Holding'")

file <- "alabiniQuoted.txt"
write(headerLines, file)
write(recordLines, file, append = TRUE)
```

Have a look at the difference.

```r
read.table("alabiniQuoted.txt", skip = 3, sep = ",", header = TRUE,
stringsAsFactors = FALSE)

<table>
<thead>
<tr>
<th>ProductID</th>
<th>Price</th>
<th>Quality</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23851</td>
<td>1245.3</td>
<td>A Mercury Ltd</td>
</tr>
<tr>
<td>2</td>
<td>3412</td>
<td>941.40</td>
<td>BB Flury SA</td>
</tr>
<tr>
<td>3</td>
<td>12184</td>
<td>1499.00</td>
<td>AA Inkoa Holding</td>
</tr>
</tbody>
</table>
```

```r
read.table("alabiniQuoted.txt", skip = 3, sep = ",", header = TRUE,
stringsAsFactors = FALSE, quote = "")

<table>
<thead>
<tr>
<th>ProductID</th>
<th>Price</th>
<th>Quality</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23851</td>
<td>1245.3</td>
<td>'Mercury Ltd'</td>
</tr>
<tr>
<td>2</td>
<td>3412</td>
<td>941.40</td>
<td>'Flury SA'</td>
</tr>
<tr>
<td>3</td>
<td>12184</td>
<td>1499.00</td>
<td>'Inkoa Holding'</td>
</tr>
</tbody>
</table>
```

Reading CSV files

If you look in the help file of the `read.table()` function you will find four more functions with tailored arguments for special file types such as CSV files, which are really just wrappers for `read.table()`.

The functions `read.csv()`, `read.csv2()`, `read.delim()`, and `read.delim2()` have specific arguments. For example, in the function `read.csv()`, the default value of the `sep` argument is a comma for commata separated files, in the function `read.csv2()` the default value is a semicolon, taking into account country-specific CSV file separators, and the functions `read.delim()` and `read.delim2()` have a tab character, "t", as the default. For further specific settings we refer to the help page.
3.5 Importing Example Data Files

The function `data()` loads specified data sets, or lists the available data sets.
Four formats of data files are supported:

Listing 3.4: Example data file formats

<table>
<thead>
<tr>
<th>Argument:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.R, .r</td>
<td>these files are read with <code>source()</code> with the working directory changed temporarily to the directory containing the respective file</td>
</tr>
<tr>
<td>.RData, .rd</td>
<td>these files are read with the function <code>load()</code></td>
</tr>
<tr>
<td>.tab, .txt, .TXT</td>
<td>these files are read with the function <code>read.table(..., header = TRUE)</code>, and hence result in a data frame.</td>
</tr>
<tr>
<td>.csv, .CSV</td>
<td>these files are read with the function <code>read.table(..., header = TRUE, sep = ";")</code> also result in a data frame.</td>
</tr>
</tbody>
</table>

If more than one matching file name is found, the first on this list is used.

Example: Get Euro conversion rate

R has an example data set with the Euro foreign exchange conversion rates.

```r
> data(euro)
> euro
ATS    BEF    DEM  ESP  FIM  FRF    IEP
13.76030 40.33990 1.95583 166.38600 5.94573 6.55957 0.78756
ITL    LUF    NLG  PTE
1936.27000 40.33990 2.20371 200.48200
> class(euro)
[1] "numeric"
```

Example: UK gas consumption

Another example data set hold quarterly UK gas consumption data in millions of therms.

```r
> data(UKgas)
> head(UKgas)
[1] 160.1 129.7 84.8 120.1 160.1 124.9
> class(UKgas)
[1] "ts"
```
3.6 Importing Historical Data Sets from the Internet

As we have already seen, the first argument in the functions `readLines()` and `read.table()` must not necessarily be a file name; it can also be a connection to the Internet. On the Internet we can find several financial data sources which we can use from R for our statistical analysis. Two of the sources we will present here: (i) the FRED2 database from the Federal Reserve in St. Louis which has a huge database from daily to annual data sets of economic time series, and (ii) Yahoo Finance with thousands of financial time series, including stock market indices, equity prices, or exchange traded funds amongst others.
In this chapter we provide a preliminary description of the various data types which are provided by R. More detailed discussions of many of them will be found in the subsequent chapters.

4.1 Characterization of Objects

Objects are characterized by their type, by their storage mode and by their object class.

The function `typeof()`

To identify the type of an R object you can use the R function `typeof()`, which returns the type of an R object. The following table lists the most prominent values as returned by the function `typeof()`

Listing 4.1: The most common object types

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>double</td>
<td>a vector containing real values</td>
</tr>
<tr>
<td>integer</td>
<td>a vector containing integer values</td>
</tr>
<tr>
<td>complex</td>
<td>a vector containing complex values</td>
</tr>
<tr>
<td>logical</td>
<td>a vector containing logical values</td>
</tr>
<tr>
<td>character</td>
<td>a vector containing character values</td>
</tr>
<tr>
<td>NULL</td>
<td>NULL</td>
</tr>
</tbody>
</table>

Listing 4.2: Less common object types

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>a special type that matches all types</td>
</tr>
<tr>
<td>builtin</td>
<td>an internal function that evaluates its arguments</td>
</tr>
</tbody>
</table>
The storage mode of a function

Both functions `mode()` and `storage.mode()` get or set the storage mode of an object. Modes have the same set of names as types except that

- types "integer" and "double" are returned as "numeric"
- types "special" and "builtin" are returned as "function"
- type "symbol" is called mode "name"
- type "language" is returned as "(" or "call"

The mode is generally used when calling functions written in another language, such as C or FORTRAN, to ensure that R objects have the data type expected by the routine being called. Note that in the S language, vectors with integer or real values are both of mode "numeric", so their storage modes need to be distinguished.

The class of an object

R possesses a simple generic function mechanism which can be used for an object-oriented style of programming. Method dispatch on appropriate function to a generic function based on the class of the first argument for S3 methods, and on any argument for S4 methods. The R function `class()` returns the name of the object class to which the object belongs.

4.2 Double

The type of double appears manifold in different R objects. These include real numbers, infinite values, and date and time objects.
Real numbers

If you perform calculations on (real) numbers, you can use the data type double to represent the numbers. Doubles are numbers, such as 314.15, 1.0014 and 1.0019. Doubles are used to represent continuous variables such as prices or financial returns.

```r
> bid <- 1.0014
> ask <- 1.0019
> spread <- ask - bid
```

Use the function `is.double()` to check whether an object is of type double.

```r
> is.double(spread)
[1] TRUE
```

Alternatively, use the function `typeof()` to obtain the type of the object spread.

```r
> object <- spread
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
  class = class(object))

typeof  mode  storag.mode  class
"double" "numeric"  "double"  "numeric"
```

Infinite Values

Infinite values are represented by Inf or -Inf. The type of these values is double.

```r
> object <- Inf
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
  class = class(object))

typeof  mode  storag.mode  class
"double" "numeric"  "double"  "numeric"
```

You can check if a value is infinite with the function `is.infinite`. Use `is.finite` to check if a value is finite.

```r
> x <- c(1, 3, 4)
> y <- c(1, 0, 4)
> x/y
[1] 1 Inf 1
> z <- log(c(4, 0, 8))
> is.infinite(z)

[1] FALSE  TRUE FALSE
Date objects

To represent a calendar date in R use the function as.Date to create an object of class Date. Calendar dates can be generated from character scalars or vectors, for example.

```r
> timeStamps <- c("1973-12-09", "1974-08-29")
> Date <- as.Date(timeStamps, "%Y-%m-%d")
> Date
[1] "1973-12-09" "1974-08-29"

> object <- Date
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
 class = class(object))
 typeof mode storag.mode class
"double" "numeric" "double" "Date"

Note that the storage mode of a date object is double and the object itself is an object of class Date.

You can add a number to a date object, the number is interpreted as the number of days to add to the date.

```r
> Date + 19
[1] "1973-12-28" "1974-09-17"
```n

Note that the default formats follow the rules of the ISO 8601 international standard which expresses a day as "2001-02-03".

Diffftime objects

You can subtract one date from another, the result is an object of difftime

```r
> difftime <- Date[2] - Date[1]
> difftime
Time difference of 263 days

> object <- difftime
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
    class = class(object))
  typeof          mode         storag.mode       class
"double"      "numeric"     "double"          "difftime"
```

POSIXt objects

In R the classes POSIXct and POSIXlt can be used to represent calendar dates and times. You can create POSIXct objects with the function as.POSIXct. The function accepts characters as input, and it can be used to not only to specify a date but also a time within a date.
4.2. Double

```r
> posixDate <- as.POSIXct("2003-01-23", tz = "")
> posixDate
[1] "2003-01-23 CET"
```

By default the time zone is unspecified, tz=". If we unclass the object

```r
> unclass(posixDate)
[1] 1043276400
attr("tzone")
[1] ""
```

we see that the time is measured in a number counted from some origin.

```r
> posixDateTime <- as.POSIXct("2003-04-23 15:34")
> posixDateTime
[1] "2003-04-23 15:34:00 CEST"
```

```r
> object <- posixDate
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
  class = class(object))
typeof mode storag.mode class
"double" "numeric" "double" "POSIXt" "POSIXct"
```

The function `as.POSIXlt()` converts a date where the atomic parts of the data and time can be retrieved.

```r
> ltDateTime <- as.POSIXlt(posixDateTime)
> ltDateTime
[1] "2003-04-23 15:34:00 CEST"
```

```r
> unclass(ltDateTime)
$sec
[1] 0

$min
[1] 34

$hour
[1] 15

$mday
[1] 23

$mon
[1] 3

$year
[1] 103

$wday
[1] 3

$yday
```
A very useful function is `strptime`; it is used to convert a certain character representation of a date (and time) into another character representation. To do this, you need to provide a conversion specification that starts with a % followed by a single letter.

```r
> timestamps <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
> Date <- strptime(timestamps, "%d%b%Y")
> posixDate <- as.POSIXct(Date)
> posixDate

> dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92")
> DateTime <- paste(dates, times)
> DateTimeStamps <- strptime(DateTime, "%m/%d/%y %H:%M:%S")

An object of type POSIXct can be used in certain calculations, a number can be added to a POSIXct object. This number will be the interpreted as the number of seconds to add to the POSIXct object.

```r
> posixDateTimeStamps + 13
```

You can subtract two POSIXct objects, the result is a so called difftime object.

```r
> posix2 <- as.POSIXct("2004-01-23 14:33")
> posix1 <- as.POSIXct("2003-04-23")
> diffPosix <- posix2 - posix1
> diffPosix
```

The `difftime()` function
4.3. **Integers**

Integers are natural numbers. They are represented as type *Integers*. However, not only integer numbers are represented by this data type, but also factors. These are discussed below.

**Natural numbers**

Integers can be used to represent counting variables, for example the number of assets in a portfolio.

```r
> nAssets <- as.integer(15)
> is.integer(nAssets)
[1] TRUE
```
```r
> object <- nAssets
> c(typeof = typeof(object), mode = mode(object), storage.mode = storage.mode(object),
 class = class(object))

 typeof mode storage.mode class
 "integer" "numeric" "integer" "integer"

Note that 15.0 is not an integer!

> nAssets <- 15
> is.integer(nAssets)
[1] FALSE

So the number 15 of type integer in R is not the same thing as a 15.0 of type ‘double’. However, you can mix objects of type ‘double’ and ‘integer’ in one calculation without any problems.

> nEquities <- as.integer(16)
> nBonds <- as.integer(6)
> percentBonds <- 100 * nBonds/(nEquities + nBonds)
> ans <- round(percentBonds, 1)
> ans
[1] 27.3
> typeof(ans)
[1] "double"

The answer is of type double and is 27.3%.

Factors

The factors are used to represent categorical data, i.e. data for which the value range is a collection of codes. For example:

- variable exchange with values "NASDAQ", "NYSE" and "AMEX".
- variable FinCenter with values: "Europe/Zurich" or "London".

An individual code of the value range is also called a level of the factor variable. Therefore, the variable exchange is a factor variable with three levels, "NASDAQ", "NYSE" and "AMEX".

Sometimes people confuse factor type with character type. Characters are often used for labels in graphs, column names or row names. Factors must be used when you want to represent a discrete variable in a data frame and want to analyze it.

Factor objects can be created from character objects or from numeric objects, using the function `factor()`. For example, to create a vector of length five and of type factor, do the following:

> exchange <- c("NASDAQ", "NYSE", "NYSE", "AMEX", "NASDAQ")
```
The object exchange is a character object. You need to transform it to factor.

```r
> exchange <- factor(exchange)
> exchange
[1] NASDAQ NYSE NYSE AMEX NASDAQ
Levels: AMEX NASDAQ NYSE
```

So what is the object type of factors?

```r
> object <- exchange
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
 class = class(object))

typeof mode storag.mode class
"integer" "numeric" "integer" "factor"
```

Factors are of type integer.

Use the function `levels()` to see the different levels of a factor variable.

```r
> levels(exchange)
[1] "AMEX" "NASDAQ" "NYSE"
```

Note that the result of the `levels` function is of type `character`. Another way to generate the exchange variable is as follows:

```r
> exchange <- c(1, 2, 2, 3, 1)
```

The object exchange is an integer variable, so it needs to be transformed to a factor.

```r
> exchange <- factor(exchange)
> exchange
[1] 1 2 2 3 1
Levels: 1 2 3
```

The object exchange looks like an integer variable, but it is not. The 1 here represents level "1". Therefore arithmetic operations on the variable are not possible:

```r
exchange + 4
[1] NA NA NA NA NA
Warning message:
In Ops.factor(exchange, 4) : + not meaningful for factors
```

It is better to rename the levels, so level "1" becomes "AMEX", level "2" becomes "NASDAQ", and level "3" becomes "NYSE":

```r
> levels(exchange) <- c("AMEX", "NASDAQ", "NYSE")
> exchange
[1] AMEX NASDAQ NASDAQ NYSE AMEX
Levels: AMEX NASDAQ NYSE
```
You can transform factor variables into double or integer variables using the `as.double` or `as.integer` function.

```r
> exchange.numeric <- as.double(exchange)
> exchange.numeric
[1] 1 2 2 3 1
```

The "1" is assigned to the "AMEX" level, only because alphabetically "AMEX" comes first. If the order of the levels is of importance, you will need to use ordered factors. Use the function `ordered` and specify the order with the levels argument. For example:

```r
> Position <- ordered(Position, levels = c("Short", "Neutral", "Low"))
> Position
[1] <NA> Short Neutral Short Neutral <NA> Short
Levels: Short < Neutral < Low
```

The last line indicates the ordering of the levels within the factor variable. When you transform an ordered factor variable, the order is used to assign numbers to the levels.

```r
> Position.numeric <- as.double(Position)
> Position.numeric
[1] NA 1 2 1 2 NA 1
```

### 4.4 Complex

Objects of type `complex` are used to represent complex numbers. In statistical data analysis you will get in contact with them for example in the field of spectral analysis of time series. Use the function `as.complex()` or `complex()` to create objects of type `complex`.

```r
> cplx1 <- as.complex(-25 + (0+5i))
> sqrt(cplx1)
[1] 0.4975+5.0247i

> cplx2 <- complex(5, real = 2, im = 6)
> cplx2
[1] 2+6i 2+6i 2+6i 2+6i 2+6i

> object <- cplx2
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
 class = class(object))
 typeof mode storag.mode class
 "complex" "complex" "complex" "complex"
```
Note that by default calculations are done on real numbers, so the function call \texttt{sqrt(-1)} results in \texttt{NA}. Use instead

\begin{verbatim}
> sqrt(as.complex(-1))
[1] 0+1i
\end{verbatim}

### 4.5 Logical

An object of class \texttt{logical} can have the value \texttt{TRUE} or \texttt{FALSE} and is used to indicate if a condition is true or false. Such objects are usually the result of logical expressions.

\begin{verbatim}
> test <- (bid > ask)

> object <- test
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
    class = class(object))

   typeof mode storag.mode class
   "logical" "logical" "logical" "logical"
\end{verbatim}

The result of the function \texttt{is.double} is an object of type \texttt{logical} (\texttt{TRUE} or \texttt{FALSE}).

\begin{verbatim}
> is.double(1.0014)
[1] TRUE

> is.double(bid)
[1] TRUE
\end{verbatim}

Logical expressions are often built from logical operators:

\begin{verbatim}
Operator:  smaller than    smaller than or equal to
<         <=                >         >=                ==                  !=
        larger than        larger than or equal to
        is equal to        is unequal to
\end{verbatim}

The logical operators \texttt{and}, \texttt{or} and \texttt{not} are given by \&, \mid and \mid, respectively.

\begin{verbatim}
> bid ! ask
[1] TRUE
\end{verbatim}
Calculations can also be carried out on logical objects, in which case the FALSE is replaced by a zero and a one replaces the TRUE. For example, the sum function can be used to count the number of TRUE’s in a vector or array. For example is the number of elements in vector larger than a given number?

```r
> prices <- c(1.55, 1.61, 1.43, 1.72, 1.69)
> sum(prices > 1.62)
[1] 2
```

## 4.6 Missing Data

We have already seen the symbol NA. In R it is used to represent *missing* data (*Not Available*). The type of the NA symbol depends on the initial vector class where the data is missing. If we are working with a vector in double storage mode, the NA will also be in double storage mode. Likewise for other classes as character, logical or integer.

```r
> (object <- NA)
[1] NA
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
 class = class(object))
 typeof mode storag.mode class
 "logical" "logical" "logical" "logical"

> (object <- as.character(NA))
[1] NA
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
 class = class(object))
 typeof mode storag.mode class
 "character" "character" "character" "character"
```

There is also the symbol NaN (*Not a Number*), which can be detected with the function `is.nan`.

```r
> x <- as.double(c("1", "2", "qaz"))
> is.na(x)
[1] FALSE FALSE TRUE

> z <- sqrt(c(1, -1))
> is.nan(z)
[1] FALSE TRUE
4.7 CHARACTER

A character object is represented by a collection of characters between double or single quotes, " and ". One way to create character objects is as follows.

```r
> letters <- c("a", "b", "c")
> letters
[1] "a" "b" "c"
> typeof(letters)
[1] "character"

> exchange <- "Tokyo Stock Exchange"
> exchange
[1] "Tokyo Stock Exchange"

> object <- exchange
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
   class = class(object))

  typeof  mode  storag.mode  class
"character"  "character"  "character"  "character"
```

The double quotes indicate that we are dealing with an object of type character.

4.8 NULL

In R NULL represents the null object and is often returned by expressions and functions whose value is undefined.

```r
> object <- NULL
> c(typeof = typeof(object), mode = mode(object), storag.mode = storage.mode(object),
   class = class(object))

  typeof   mode   storag.mode   class
"NULL"    "NULL"    "NULL"    "NULL"
```
Part II

Programming
Most tasks are performed by calling a function in R. In fact, everything we have done so far is calling an existing function, which then performed a certain task resulting in some kind of output. A function can be regarded as a collection of statements and is an object in R of class function. One of the strengths of R is the ability to extend R by writing new functions.

5.1 Writing your first function

The general form of a function is given by:

```
functionname <- function(arg1, arg2,...) {
  <<expressions>>
}
```

In the above display `arg1` and `arg2` in the function header are input arguments of the function. Note that a function does not need to have any input arguments. The body of the function consists of valid R statements. For example, the commands, functions and expressions you type in the R console window. Normally, the last statement of the function body will be the return value of the function. This can be a vector, a matrix or any other data structure. Thus, it is not necessary to explicitly use `return()`.

The following short function `tmean` calculates the mean of a vector `x` by removing the k percent smallest and the k percent largest elements of the vector. We call this mean a trimmed mean, therefore we named the function `tmean`.

```r
> tmean <- function(x, k) {
  xt <- quantile(x, c(k, 1 - k))
  mean(x[x > xt[1] & x < xt[2]])
}
```

67
Once the function has been created, it can be run.

```r
> test <- rnorm(100)
> tmean(test, 0.05)
[1] 0.047795
```

The function `tmean` calls two standard functions, `quantile` and `mean`. Once `tmean` is created it can be called from any other function. If you write a short function, a one-liner or two-liner, you can type the function directly in the console window. If you write longer functions, it is more convenient to use a script file. Type the function definition in a script file and run the script file. Note that when you run a script file with a function definition, you will only define the function (you will create a new object). To actually run it, you will need to call the function with the necessary arguments.

Saving your function in a script file

You can use your favourite text editor to create or edit functions. Use the function `source` to evaluate expressions from a file. Suppose `tmean.R` is a text file, saved on your hard disk, containing the function definition of `tmean()`. In this example we use the function `dump()` to export the `tmean()` to a text file.

```r
> tmean <- function(x, k) {
    xt <- quantile(x, c(k, 1 - k))
    mean(x[x > xt[1] & x < xt[2]])
}
> dump("tmean", "tmean.R")
```

You can load the function `tmean` in a new R session by using the `source()` function. It is important to specify the relative path to your file if R has not been started in the same directory where the source file is. You can use the function `setwd()` to change the working directory of your R session or use the GUI menu “Change working directory” if available.

```r
> source("tmean.R")
```

Now we can run the function:

```r
> tmean(test, 0.05)
[1] 0.047795
```

Using comments

If you want to put a comment inside a function, use the `#` symbol. Anything between the `#` symbol and the end of the line will be ignored.
5.2. Arguments and Variables

In this section we explain the difference between required and optional arguments, explain the meaning of the ... argument, introduce local variables, and show the different options for returning an object from a function.

Required and optional arguments

When calling functions in R, the syntax of the function definition determines whether argument values are required or optional. With optional arguments, the specification of the arguments in the function header is:

```r
argname = defaultvalue
```

In the following function, for example, the argument `x` is required and R will give an error if you don't provide it. The argument `k` is optional, having the default value 2:

```r
> power <- function(x, k = 2) {
  x^k
}
```

Run it

```r
> power(5)
[1] 25
```
Bear in mind that \(x \) is a required argument. You have to specify it, otherwise you will get an error.

```r
> power()
Error in power() : argument "x" is missing, with no default
```

To compute the third power of \(x \), we can specify a different value for \(k \) and set it to 3:

```r
> power(5, k = 3)
[1] 125
```

The ‘...’ Argument

The three dots argument can be used to pass arguments from one function to another. For example, graphical parameters that are passed to plotting functions or numerical parameters that are passed to numerical routines. Suppose you write a small function to plot the \(\sin() \) function from zero to \(x_{up} \).

```r
> sinPlot <- function(xup = 2 * pi, ...) {
  x <- seq(0, xup, l = 100)
  plot(x, sin(x), type = "l", ...)
}
> sinPlot(col = "red")
```

The function `sinPlot` now accepts any argument that can be passed to the `plot()` function (such as `col()`, `xlab()`, etc.) without needing to specify those arguments in the header of `sinPlot`.

Local Variables

Assignments of variables inside a function are local, unless you explicitly use a global assignment (the "<-" construction or the `assign` function). This means a normal assignment within a function will not overwrite objects outside the function. An object created within a function will be lost when the function has finished. Only if the last line of the function definition is an assignment, then the result of that assignment will be returned by the function. Note that it is not recommended to use global variables in any R code.

In the next example an object \(x \) will be defined with value zero. Inside the function `functionx`, \(x \) is defined with value 3. Executing the function `functionx` will not affect the value of the global variable ‘\(x \)’.
If you want to change the global variable \(x \) with the return value of the function \(\text{reassign} \), you must assign the function result to \(x \). This overwrites the object \(x \) with the result of the \(\text{reassign} \) function:

\[
\begin{align*}
> & \quad x <- 0 \\
> & \quad \text{reassign} <- \text{function()} \{ \\
> & \quad \quad x <- 3 \\
> & \quad \} \\
> & \quad \text{reassign}() \\
> & \quad x \\
> [1] 0
\end{align*}
\]

The arguments of a function can be objects of any type, even functions! Consider the next example:

\[
\begin{align*}
> & \quad \text{execFun} <- \text{function}(x, \text{fun}) \{ \\
> & \quad \quad \text{fun}(x) \\
> & \} \\
> & \quad \text{Sin} <- \text{execFun}(\pi/3, \sin) \\
> & \quad \text{Cos} <- \text{execFun}(\pi/3, \cos) \\
> & \quad \text{c(Sin, Cos, Sum = Sin} * \sin + \cos * \cos) \\
> & \quad \text{Sum} \\
> & \quad 0.86603 \quad 0.50000 \quad 1.00000
\end{align*}
\]

The second argument of the function \(\text{execFun} \) needs to be a function which will be called inside the function.

Returning an object

Often the purpose of a function is to do some calculations on input arguments and return the result. As we have already seen in all previous examples, by default the last expression of the function will be returned:

\[
\begin{align*}
> & \quad \text{sumSinCos} <- \text{function}(x, y) \{ \\
> & \quad \quad \text{Sin} <- \sin(x) \\
> & \quad \quad \text{Cos} <- \cos(y) \\
> & \quad \quad \text{Sin} + \text{Cos} \\
> & \} \\
> & \quad \text{sumSinCos}(0.2, 1/5) \\
> [1] 1.1787
\end{align*}
\]
In the above example \(\sin + \cos \) is returned, whereas the individual objects \(\sin \) and \(\cos \) will be lost. You can only return one object. If you want to return more than one object, you can return them in a list where the components of the list are the objects to be returned. For example

```r
> sumSinCos <- function(x, y) {
  Sin <- sin(x)
  Cos <- cos(y)
  list(Sin, Cos, Sum = Sin + Cos)
}
```

```r
> sumSinCos(0.2, 1/5)
[[1]]
[1] 0.19867

[[2]]
[1] 0.98007

$Sum
[1] 1.1787
```

To exit a function before it reaches the last line, use the `return` function. Any code after the return statement inside a function will be ignored. For example:

```r
> SinCos <- function(x, y) {
  Sin <- sin(x)
  Cos <- cos(y)
  if (Cos > 0) {
    return(Sin + Cos)
  } else {
    return(Sin - Cos)
  }
}
```

```r
> SinCos(0.2, 1/5)
[1] 1.1787
> sin(0.2) + cos(1/5)
[1] 1.1787
> sin(0.2) - cos(1/5)
[1] -0.7814
```

5.3 Scoping rules

The scoping rules of a programming language are the rules that determine how the programming language finds a value for a variable. This is especially important for `free` variables inside a function and for functions defined inside a function. Let’s look at the following example function.
5.4. LAZY EVALUATION

```r
> myScope <- function(x) {
  y <- 6
  z <- x + y + a1
  a2 <- 9
  insidef = function(p) {
    tmp <- p * a2
    sin(tmp)
  }
  2 * insidef(z)
}
```

In the above function

- `x`, `p` are formal arguments.
- `y`, `tmp` are local variables.
- `a2` is a local variable in the function `myScope`.
- `a2` is a free variable in the function `insidef`.

R uses a so-called *lexical scoping* rule to find the value of free variables, see ?. With lexical scoping, free variables are first resolved in the environment in which the function was created. The following calls to the function `myScope` shows this rule.

In the first example R tries to find `a1` in the environment where `myScope` was created but there is no object `a1`.

```r
> myScope(8)
Error in myf(8) : object "a1" not found
```

Now let us define the objects `a1` and `a2` but what value was assigned to `a2` in the function `insidef`?

```r
> a1 <- 10
> a2 <- 1000
> myScope(8)
[1] 1.3921
```

It took `a2` in `myScope`, so `a2` has the value 9.

5.4 LAZY EVALUATION

When writing functions in R, a function argument can be defined as an expression like

```r
> myf <- function(x, nc = length(x)) {
  
}
```
When arguments are defined in such a way you must be aware of the *lazy evaluation* mechanism in R. This means that arguments of a function are not evaluated until needed. Consider the following examples.

```r
> myf <- function(x, nc = length(x)) {
  x <- c(x, x)
  print(nc)
}

> xin <- 1:10
> myf(xin)
[1] 20
```

The argument `nc` is evaluated after `x` has doubled in length, it is not ten, the initial length of `x` when it entered the function.

```r
> logplot <- function(y, ylab = deparse(substitute(y))) {
  y <- log(y)
  plot(y, ylab = ylab)
}
```

The plot will create a nasty label on the y axis. This is the result of lazy evaluation, `ylab` is evaluated after `y` has changed. One solution is to force an evaluation of `ylab` first

```r
> logplot <- function(y, ylab = deparse(substitute(y))) {
  ylab
  y <- log(y)
  plot(y, ylab = ylab)
}
```

5.5 Flow Control

The following shows a list of constructions to perform testing and looping. These constructions can also be used outside a function to control the flow of execution.

Tests with if()

The general form of the if construction has the form

```r
if(test) {
  <<statements1>>
} else {
  <<statements2>>
}
```

where `test` is a logical expression such as `x < 0` or `x < 0 & x > -8`. R evaluates the logical expression; if it results in TRUE, it executes the `true`
5.5. Flow control

statements. If the logical expression results in FALSE, then it executes the false statements. Note that it is not necessary to have the else block. Adding two vectors in R of different length will cause R to recycle the shorter vector. The following function adds the two vectors by chopping of the longer vector so that it has the same length as the shorter.

```r
> myplus <- function(x, y) {
  n1 <- length(x)
  n2 <- length(y)
  if (n1 > n2) {
    z <- x[1:n2] + y
  }
  else {
    z <- x + y[1:n1]
  }
  z
}
```

```r
> myplus(c(1:10, 1:3))
[1] 2 4 6
```

Tests with switch()

The switch function has the following general form.

```
switch(object,
   "value1" = {expr1},
   "value2" = {expr2},
   "value3" = {expr3},
   {other expressions}
)
```

If object has value value1 then expr1 is executed, if it has value2 then expr2 is executed and so on. If object has no match then other expressions is executed. Note that the block {other expressions} does not have to be present, the switch will return NULL if object does not match any value. An expression expr1 in the above construction can consist of multiple statements. Each statement should be separated with a ; or on a separate line and surrounded by curly brackets.

Example:
Choosing between two calculation methods:

```r
> mycalc <- function(x, method = "ml") {
    switch(method, ml = {
      my.mlmethod(x)
    }, rml = {
      my.rmlmethod(x)
    })
}
```
Looping with for

The for, while and repeat constructions are designed to perform loops in R. They have the following forms.

```r
for (i in for_object) {
    <<some expressions>>
}
```

In the loop some expressions are evaluated for each element i in for_object.

Example: A recursive filter.

```r
> arsim <- function(x, phi) {
    for (i in 2:length(x)) {
        x[i] <- x[i] + phi * x[i - 1]
    }
    x
}
> arsim(1:10, 0.75)
```

Note that the for_object could be a vector, a matrix, a data frame or a list.

Looping with while()

```r
while (condition) {
    <<some expressions>>
}
```

In the while loop some expressions are repeatedly executed until the logical condition is FALSE. Make sure that the condition is FALSE at some stage, otherwise the loop will go on indefinitely.

Example:

```r
> mycalc <- function() {
    tmp <- 0
    n <- 0
    while (tmp < 100) {
        tmp <- tmp + rbinom(1, 10, 0.5)
        n <- n + 1
    }
    cat("It took ")
    cat(n)
    cat(" iterations to finish \n")
}
```
5.5. Flow control

Looping with `repeat()`

repeat
{
 <<commands>>
}

In the repeat loop «commands» are repeated *infinitely*, so repeat loops will have to contain a break statement to escape them.
CHAPTER 6

DEBUGGING YOUR R FUNCTIONS

Debugging is the methodical process to find and reduce and eliminate warnings and errors returned from your R functions. These warnings and errors are also called bugs, therefore the name debugging. The goal of debugging is to run your R function behaved as it was expected.

The following functions will help you to analyze and debug your R functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceback</td>
<td>prints the call stack of the last uncaught error</td>
</tr>
<tr>
<td>warning</td>
<td>generates a warning message</td>
</tr>
<tr>
<td>stop</td>
<td>stops execution and executes an error action</td>
</tr>
<tr>
<td>debug</td>
<td>sets or unsets the debugging flag on a function</td>
</tr>
<tr>
<td>browser</td>
<td>interrupt execution and allows for inspection</td>
</tr>
</tbody>
</table>

6.1 The traceback() Function

The R language provide the user with some tools to track down unexpected behaviour during the execution of (user written) functions. For example,

- A function may throw warnings at you. Although warnings do not stop the execution of a function and could be ignored, you should check out why a warning is produced.

- A function stops because of an error. Now you must really fix the function if you want it to continue to run until the end.

- Your function runs without warnings and errors, however the number it returns does not make any sense.
The first thing you can do when an error occurs is to call the function traceback. It will list the functions that were called before the error occurred. Consider the following two functions.

```r
> myf <- function(z) {
  x <- log(z)
  if (x > 0) {
    print("PPP")
  } else {
    print("QQQ")
  }
}
> testf <- function(pp) {
  myf(pp)
}
```

Executing the command `testf(-9)` will result in an error, execute traceback to see the function calls before the error.

```r
Error in if (x > 0) { : missing value where TRUE/FALSE needed
In addition: Warning message:
NaNs produced in: log(x)
```

Sometimes it may not be obvious where a warning is produced, in that case you may set the option

```r
> options(warn = 2)
```

Instead of continuing the execution, R will now halt the execution if it encounters a warning.

6.2 The function `warning()` and `stop()`

You, as the writer of a function, can also produce errors and warnings. In addition to putting ordinary print statements such as `print("Some message")` in your function, you can use the function `warning()`. For example,

```r
> variation <- function(x) {
  if (min(x) <= 0) {
    warning("variation only useful for positive data")
  }
  sd(x)/mean(x)
}
> NA
```
If you want to raise an error you can use the function `stop()`. In the above example when we replace `warning()` by `stop()` R would halt the execution.

```r
> NA
[1] NA
```

R will treat your warnings and errors as normal R warnings and errors. That means for example, the function `traceback()` can be used to see the call stack when an error occurred.

6.3 Stepping Through a Function

With `traceback` you will now in which function the error occurred, it will not tell you where in the function the error occurred. To find the error in the function you can use the function `debug()`, which will tell R to execute the function in debug mode. If you want to step through *everything* you will need to set debug flag for the main function and the functions that the main function calls:

```r
debug(testf)
debug(myf)
```

Now execute the function `testf()`, R will display the body of the function and a browser environment is started.

```r
testf(-9)
debugging in: testf(-9)
debug: {
  myf(pp)
}
Browse[1]>
```

In the browser environment there are a couple of special commands you can give.

- `n`, executes the current line and prints the next one.
- `c`, executes the rest of the function without stopping.
- `Q`, quits the debugging completely, so halting the execution and leaving the browser environment.
- `where`, shows you where you are in the function call stack.
In addition to these special commands, the browser environment acts as an interactive R session, that means you could enter commands such as:

- `ls()`, show all objects in the local environment, the current function.
- `print(object)` or just `object`, prints the value of the object.
- `675/98876`, just some calculations.
- `object <- 89`, assigning a new value to an object, the debugging process will continue with this new value.

If the debug process is finished remove the debug flag `undebug(myf)`.

6.4 The function `browser()`

It may happen that an error occurs at the end of a lengthy function. To avoid stepping through the function line by line manually, the function `browser()` can be used. Inside your function insert the `browser()` statement at a location where you want to enter the debugging environment.

```r
myf <- function(x) {
  ... some code ...
  browser()
  ... some code ...
}
```

Run the function `myf` as normally. When R reaches the `browser()` statement then the normal execution is halted and the debug environment is started.
Chapter 7

Efficient Calculations

The efficiency of calculations depends on how you perform them.

7.1 Vectorized Computations

Vectorized calculations, for example, avoid going through individual vector or matrix elements and avoid for() loops. Though very efficient, vectorized calculations cannot always be used. On the other hand, users having a Pascal or C programming background often forget to apply vectorized calculations where they could be used. We therefore give a few examples to demonstrate its use.

A weighted average

Take advantage of the fact that most calculations and mathematical operations already act on each element of a matrix or vector. For example, log() and sin() calculate the log and sin on all elements of the vector x. For example, to calculate a weighted average \(W \)

\[
W = \frac{\sum_i x_i w_i}{\sum_i w_i}
\]

in R of the numbers in a vector x with corresponding weights in the vector w, use:

\[
\text{ave.w} <- \text{sum(x*w)} / \text{sum(w)}
\]

The multiplication and divide operator act on the corresponding vector elements.
Replacing numbers

Suppose we want to replace all elements of a vector which are larger than one by the value 1. You could use the following construction (as in C or Fortran):

```r
> tmp <- Sys.time()
> x <- rnorm(15000)
> for (i in 1:length(x)) {
    if (x[i] > 1)
        x[i] <- 1
}
> Sys.time() - tmp
Time difference of 0.036382 secs
```

However, the following construction is much more efficient:

```r
> tmp <- Sys.time()
> x <- rnorm(15000)
> x[x > 1] <- 1
> Sys.time() - tmp
Time difference of 0.0053601 secs
```

The second construction works on the complete vector `x` at once instead of going through each separate element. Note that it is more reliable to time an R expression using the function `system.time` or `proc.time`. See their help files.

The function `ifelse`

Suppose we want to replace the positive elements in a vector by 1 and the negative elements by -1. When a normal ‘if- else’ construction is used, then each element must be used individually.

```r
> tmp <- Sys.time()
> x <- rnorm(15000)
> for (i in 1:length(x)) {
    if (x[i] > 1) {
        x[i] <- 1
    }
    else {
        x[i] <- -1
    }
}
> Sys.time() - tmp
Time difference of 0.078888 secs
```

In this case the function `ifelse` is more efficient.

```r
> tmp <- Sys.time()
> x <- rnorm(15000)
> x <- ifelse(x > 1, 1, -1)
> tmp - Sys.time()
```
The function `ifelse()` has three arguments. The first is a test (a logical expression), the second is the value given to those elements of `x` which pass the test, and the third argument is the value given to those elements which fail the test.

The function `cumsum()`

To calculate cumulative sums of vector elements use the function `cumsum`. For example:

```r
> x <- 1:10
> y <- cumsum(x)
> y

[1]  1  3  6 10 15 21 28 36 45 55
```

The function `cumsum` also works on matrices in which case the cumulative sums are calculated per column. Use `cumprod` for cumulative products, `cummin` for cumulative minimums and `cummax` for cumulative maximums.

Matrix multiplication

In R a matrix-multiplication is performed by the operator `%*%`. This can sometimes be used to avoid explicit looping. An `m` by `n` matrix `A` can be multiplied by an `n` by `k` matrix `B` in the following manner:

```r
> NA

[1] NA
```

So element `C[i, j]` of the matrix `C` is given by the formula:

\[C_{i,j} = \sum_{k} A_{i,k} B_{k,j} \]

If we choose the elements of the matrices `A` and `B` ‘cleverly’, explicit for-loops could be avoided. For example, column-averages of a matrix. Suppose we want to calculate the average of each column of a matrix. Proceed as follows:

```r
> A <- matrix(rnorm(1000), ncol = 10)
> n <- dim(A)[1]
> mat.means <- t(A) %*% rep(1/n, n)
```
7.2 The Family of \texttt{apply()} Functions

The function \texttt{apply()}

This function is used to perform calculations on parts of arrays. Specifically, calculations on rows and columns of matrices, or on columns of a data frame.

To calculate the means of all columns in a matrix, use the following syntax:

```r
> M <- matrix(rnorm(10000), ncol = 100)
> apply(M, 1, mean)
```

The first argument of \texttt{apply} is the matrix, the second argument is either a 1 or a 2. If one chooses 1 then the mean of each row will be calculated, if one chooses 2 then the mean will be calculated for each column. The third argument is the name of a function that will be applied to the columns or rows.

The function \texttt{apply()} can also be used with a function that you have written yourself. Extra arguments to your function must now be passed through the \texttt{apply} function. The following construction calculates the number of entries that is larger than a threshold \(d\) for each row in a matrix.

```r
> thresh <- function(x, d) {
>   sum(x > d)
> }
> M <- matrix(rnorm(10000), ncol = 100)
> apply(M, 1, thresh, 0.6)
```

Notice that the argument \(d\) is now passed to \texttt{apply()}.

```r
> M <- matrix(rnorm(10000), ncol = 100)
> apply(M, 1, thresh, 0.6)
```

```r
[1] 30 30 34 35 36 32 32 34 32 33 38 23 28 25 24 30 24 24 28 30 28 26
[76] 35 21 20 33 29 31 26 27 24 31 35 23 14 27 25 23 27 35 35 24 28 27 27 25 27
```
7.2. The Family of apply() Functions

The lapply() and sapply() functions

```r
> NA
[1] NA
```

The function sapply() can be used as well:

```r
sapply(car.test.frame, is.numeric)
```

<table>
<thead>
<tr>
<th>Price</th>
<th>Country</th>
<th>Reliability</th>
<th>Mileage</th>
<th>Type</th>
<th>Weight</th>
<th>Disp.</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

The function sapply can be considered as the 'simplified' version of lapply. The function lapply returns a list and sapply a vector (if possible). In both cases the first argument is a list (or data frame), the second argument is the name of a function. Extra arguments that normally are passed to the function should be given as arguments of lapply or sapply.

```r
> mysummary <- function(x) {
  if (is.numeric(x))
    return(mean(x))
  else return(NA)
}
> NA
[1] NA
```

Some attention should be paid to the situation where the output of the function to be called in sapply is not constant. For instance, if the length of the output-vector depends on a certain calculation:

```r
> myf <- function(x) {
  n <- as.integer(sum(x))
  out <- 1:n
  out
}
> testdf <- as.data.frame(matrix(runif(25), ncol = 5))
> sapply(testdf, myf)
```

```
$V1
[1] 1 2

$V2
[1] 1 2 3

$V3
[1] 1 2

$V4
[1] 1

$V5
[1] 1 2
```

The result will then be an object with a list structure.
The function `tapply()`

This function is used to run another function on the cells of a so called *ragged array*. A ragged array is a pair of two vectors of the same size. One of them contains data and the other contains grouping information. The following data vector `x` and grouping vector `y` form an example of a ragged array.

```r
> x <- rnorm(50)
> y <- as.factor(sample(c("A", "B", "C", "D"), size = 50, replace = TRUE))
```

A cell of a ragged array are those data points from the data vector that have the same label in the grouping vector. The function `tapply()` calculates a function on each cell of a ragged array.

```r
> tapply(x, y, mean, trim = 0.3)
A   B   C   D
0.42799 0.36805 0.33787 -0.12530
```

Combining the functions `lapply()` and `tapply()`

To calculate the mean per group in every column of a data frame, one can use `sapply()`/`lapply()` in combination with `tapply()`. Suppose we want to calculate the mean per group of every column in the data frame `cars`, then we can use the following code:

```r
> mymean <- function(x, y) {
    tapply(x, y, mean)
}
> NA
```

7.3 The function `by()`

The `by()` function applies a function on parts of a data.frame. Lets look at the cars data again, suppose we want to fit the linear regression model `Price` `Weight` for each type of car. First we write a small function that fits the model `Price` `Weight` for a data frame.

```r
> myregr <- function(data) {
    lm(Price ~ Weight, data = data)
}
```

This function is then passed to the `by()` function.

```r
> NA
[1] NA
```
The output object `outreg` of the `by()` function contains all the separate regressions, it is a so called ‘by’ object. Individual regression objects can be accessed by treating the ‘by’ object as a list

```r
> NA
[1] NA
```

7.4 The Function `outer()`

The function `outer()` performs an outer-product given two arrays (vectors). This can be especially useful for evaluating a function on a grid without explicit looping. The function has at least three input-arguments: two vectors `x` and `y` and the name of a function that needs two or more arguments for input. For every combination of the vector elements of `x` and `y` this function is evaluated. Some examples are given by the code below.

```r
> x <- 1:3
> y <- 1:3
> z <- outer(x, y, FUN = "+")
> z
 [,1] [,2] [,3]
[1,]  0  -1  -2
[2,]  1   0  -1
[3,]  2   1   0
> x <- c("A", "B", "C", "D")
> y <- 1:9
> z <- outer(x, y, paste, sep = "")
> z
[1,] "A"  "B"  "C"  "D"  "A"  "B"  "C"  "D"  "A"
[2,] "B"  "C"  "D"  "A"  "B"  "C"  "D"  "A"  "B"
[3,] "C"  "D"  "A"  "B"  "C"  "D"  "A"  "B"  "C"
[4,] "D"  "A"  "B"  "C"  "D"  "A"  "B"  "C"  "D"
```

3D Plots and the function `outer()`

The function `outer()` is a very useful function to create 3-dimensional plot. As an example we show how to create the `z`-component for a perspective plot.

```r
> x <- seq(-4, 4, l = 50)
> y <- x
> myf <- function(x, y) {
  sin(x) + cos(y)
}
> z <- outer(x, y, FUN = myf)
> persp(x, y, z, theta = 45, phi = 45, shade = 0.45)
```
Figure 7.1: Perspective plot
CHAPTER 8

USING S3 AND S4 CLASSES

R has two types of object orientations, the older one based on the so called S3 classes, and the newer one, based on the S4 class model.

8.1 S3 CLASS MODEL BASICS

The usual way to define an S3 class in R is simply to attach a "class" attribute to an object. Then define methods (functions) that use this attribute and act properly according to it.

S3 Methods

The function methods()

> args(methods)
function (generic.function, class)
NULL

lists all available methods for an S3 generic function, or all methods for a class.

S3 plot methods

To list the plot() methods type

> methods(plot)
[1] plot.acf* plot.data.frame* plot.Date*
[4] plot.decomposed.ts* plot.default plot.dendrogram*
[7] plot.density plot.ecdf plot.factor*
[10] plot.formula* plot.hclust* plot.histogram*
[16] plot.medpolish* plot.mlm plot.POSIXct*
[19] plot.POSIXt* plot.ppr* plot.prcomp*
[22] plot.princomp* plot.profile.nls* plot.spec
[25] plot.spec.coherency plot.spec.phase plot.stepfun
Let us consider some examples. Create a vector of 100 normal random variates and generate an autoregressive process of order 1 and AR coefficient 0.25.

```r
> set.seed(4711)
> eps = rnorm(120, sd = 0.1)
> y = eps[1]
> for (i in 2:120) y[i] = 0.5 * y[i - 1] + eps[i]
> y = round(y, 3)
> names(y) = paste(100 * rep(1991:2000, each = 12) + rep(1:12, times = 10))
> y
199101 199102 199103 199104 199105 199106 199107 199108 199109 199110 199111 0.182 0.228 0.234 0.076 -0.023 -0.162 0.001 -0.096 -0.053 0.021 -0.088 199112 199201 199202 199203 199204 199205 199206 199207 199208 199209 199210 -0.201 -0.097 -0.006 0.017 0.166 0.036 0.056 -0.025 0.090 0.116 0.066 199211 199212 199301 199302 199303 199304 199305 199306 199307 199308 199309 0.131 0.039 -0.117 -0.039 -0.141 -0.086 -0.141 -0.086 -0.110 0.033 0.038 0.196 0.212 199310 199311 199312 199401 199402 199403 199404 199405 199406 199407 199408 0.047 -0.038 -0.095 -0.076 -0.294 -0.038 -0.294 -0.038 -0.095 -0.076 -0.294 199409 199410 199411 199412 199501 199502 199503 199504 199505 199506 199507 -0.051 0.049 0.048 0.219 0.191 -0.026 -0.076 -0.047 -0.019 -0.048 199508 199509 199510 199511 199512 199601 199602 199603 199604 199605 199606 -0.160 -0.112 -0.256 -0.055 0.066 0.084 0.121 0.075 0.035 0.133 -0.384 199607 199608 199609 199610 199611 199612 199701 199702 199703 199704 199705 -0.104 -0.129 0.032 0.016 -0.015 0.012 0.082 0.058 0.037 0.129 0.106 199706 199707 199708 199709 199710 199711 199712 199801 199802 199803 199804 0.292 0.339 0.168 0.061 -0.005 0.053 0.135 0.115 -0.147 -0.041 0.005 199805 199806 199807 199808 199809 199810 199811 199812 199901 199902 199903 0.057 -0.082 -0.197 -0.119 -0.011 -0.022 0.022 -0.082 -0.197 -0.119 -0.011 -0.022 199904 199905 199906 199907 199908 199909 199910 199911 199912 200001 200002 -0.084 -0.041 0.019 0.088 0.042 -0.173 -0.147 -0.041 0.019 0.088 200003 200004 200005 200006 200007 200008 200009 200010 200011 200012 -0.092 -0.006 -0.084 -0.133 -0.050 -0.118 -0.013 -0.057 -0.064 0.022
```

Plot the numeric vector `y`:

```r
> x = y
> class(x)
[1] "numeric"
> plot(x)
```

Plot `y` converted in a time series object:

```r
> x = ts(y, start = c(1991, 1), frequency = 12)
> class(x)
[1] "ts"
> plot(x)
```
8.1. S3 Class Model Basics

Figure 8.1: Vector, time series, density and acf Plots.

plot the density of \(y \) obtained from a kernel density estimation

\[
> x = \text{density}(y) \\
> \text{class}(x)
\]

[1] "density"

\[
> \text{plot}(x)
\]

or plot the auto correlation function of \(y \)

\[
> x = \text{acf}(y, \text{plot} = \text{FALSE}) \\
> \text{class}(x)
\]

[1] "acf"

\[
> \text{plot}(x)
\]

In all four cases we used the generic function `plot()` to create the graph presented in the figure.
Now let us go one step further and use the function `lm()` to extract the AR coefficient from the autoregressive process y. Let us first define a multivariate time series with the original and a time lagged series

```r
> x = ts(y, start = c(1991, 1), frequency = 12)
> ts = na.omit(cbind(x, lagged = lag(x, -1)))
> plot(ts, plot.type = "single", col = c("red", "blue"))
```

Now the generic plot function plots both series, the original and the lagged in a single plot.

In the next step we fit the AR coefficient by linear regression

```r
> LM = lm(x ~ lagged, data = ts)
> LM
Call:
  lm(formula = x ~ lagged, data = ts)
```
These generic functions have methods for many other objects defined in the field of modeling.

The generic function `plot()` produces a figure with four plots, "Residuals vs Fitted", "Norma Q-Q", "Scale-Location", and "Residuals vs Leverage".

Objects of class "lm" come with many other generic functions including `print()`, `summary()`, `coef()`, `residuals()`, `fitted()`, or `predict()`. These generic functions have methods for many other objects defined in the field of modeling.

The data analysis produced by `lm()` is convenient and informative.

```
Coefficients:
 (Intercept)    lagged
 -0.00345     0.58597

> class(LM)
[1] "lm"

> par(mfrow = c(2, 2))
> plot(LM)
```

Now the generic function `plot()` produces a figure with four plots, "Residuals vs Fitted", "Norma Q-Q", "Scale-Location", and "Residuals vs Leverage".

Figure 8.3: Linear regression Plot.
Showing the code of a non-visible method

To display the code of a method, just print the name of the generic function together with the name of the method, e.g. `plot.default()`, `plot.ts()`, or

```r
> plot.density
function (x, main = NULL, xlab = NULL, ylab = "Density", type = "l",
zero.line = TRUE, ...)
{
  if (is.null(xlab))
    xlab <- paste("N =", x$n, " Bandwidth =", formatC(x$bw))
  if (is.null(main))
    main <- deparse(x$call)
  plot.default(x, main = main, xlab = xlab, ylab = ylab, type = type,
    ...
  )
  if (zero.line)
    abline(h = 0, lwd = 0.1, col = "gray")
  invisible(NULL)
}
<environment: namespace:stats>
```

However in the case of `plot.acf()` we get an error. The reason is that `plot.acf()` is a non-visible function. Use instead the function call `getAnywhere(plot.acf)` and you will get the code of the function returned.

8.2 S4 Class Model Basics
CHAPTER 9

R PACKAGES

R packages, as the name tells us, are a collection of R functions, including help in form of manual pages and vignettes, and if required source code for interfacing Fortran, C or C++ code to R functions. In addition a package also holds a description file for the package and a copyright and license information file. In the following we show how to use packages to extend R's functionality.

9.1 BASE R PACKAGES

"The standard (or base) packages are considered part of the R source code. They contain the basic functions that allow R to work, and the datasets and standard statistical and graphical functions that are described in this manual. They should be automatically available in any R installation.", from An Introduction to R.

The R distribution comes with the following packages:

<table>
<thead>
<tr>
<th>Listing 9.1: List of Base Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
</tr>
<tr>
<td>datasets</td>
</tr>
<tr>
<td>grDevices</td>
</tr>
<tr>
<td>graphics</td>
</tr>
<tr>
<td>grid</td>
</tr>
<tr>
<td>methods</td>
</tr>
<tr>
<td>splines</td>
</tr>
<tr>
<td>stats</td>
</tr>
<tr>
<td>stats4</td>
</tr>
<tr>
<td>tcltk</td>
</tr>
<tr>
<td>tools</td>
</tr>
<tr>
<td>utils</td>
</tr>
</tbody>
</table>

97
9.2 Contributed R Packages from CRAN

Contributed Packages are written by R developers and can be obtained from the CRAN server. A list of the packages with descriptions is available on the CRAN server from which the packages can also be downloaded.

http://cran.r-project.org/web/packages/

9.3 R Packages under Development from R-forge

Packages under current development can be downloaded from the R-forge server.

http://r-forge.r-project.org/

9.4 R Package Usage

Listing and loading packages

To see which packages are installed, use the command

library()

To load a particular package, e.g. MASS, use the command

library(MASS)

To see which packages are currently loaded, use the command

search()

Installing packages

To install an R package use the command

install.packages(pkgname)

Alternatively you can call its GUI equivalent. On most systems install.packages() with no arguments will allow packages to be selected from a list box.

GUI package menu

The use of packages becomes more convenient using the Packages GUI. The menu points are

Listing 9.2: GUI Packages Menu.

Load Package ...
Set CRAN Mirror ...
Select Repositories ...
Install Package(s) ...
Update Packages ...
Install Package(s) from local zip files ...

9.5 PACKAGE MANAGEMENT FUNCTIONS

The following table lists functions from R’s utils package which are very helpful to use and manage packages.

LISTING 9.3: PACKAGE MANAGEMENT FUNCTIONS.

<table>
<thead>
<tr>
<th>Function:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>available.packages</td>
<td>Download packages from CRAN-like repositories</td>
</tr>
<tr>
<td>compareVersion</td>
<td>Compare Two Package Version Numbers</td>
</tr>
<tr>
<td>contrib.url</td>
<td>Download Packages from CRAN-like repositories</td>
</tr>
<tr>
<td>download.packages</td>
<td>Download Packages from CRAN-like repositories</td>
</tr>
<tr>
<td>INSTALL</td>
<td>Install Add-on Packages</td>
</tr>
<tr>
<td>install.packages</td>
<td>Download Packages from CRAN-like repositories</td>
</tr>
<tr>
<td>installed.packages</td>
<td>Find Installed Packages</td>
</tr>
<tr>
<td>new.packages</td>
<td>Download Packages from CRAN-like repositories</td>
</tr>
<tr>
<td>packageDescription</td>
<td>Package Description</td>
</tr>
<tr>
<td>packageStatus</td>
<td>Package Management Tools</td>
</tr>
<tr>
<td>setRepositories</td>
<td>Select Package Repositories</td>
</tr>
<tr>
<td>update.packages</td>
<td>Download Packages from CRAN-like repositories</td>
</tr>
<tr>
<td>update.packageStatus</td>
<td>Package Management Tools</td>
</tr>
<tr>
<td>upgrade.packageStatus</td>
<td>Package Management Tools</td>
</tr>
</tbody>
</table>
PART III

PLOTTING
CHAPTER 10

HIGH LEVEL PLOTS

One of the strengths of R above SAS or SPSS is its graphical system, there are numerous functions. You can create 'standard' graphs, use the R syntax to modify existing graphs or create completely new graphs. A good overview of the different aspects of creating graphs in R can be found in ?. In this chapter we will first discuss the graphical functions that can be found in the base R system and the lattice package.

The graphical functions in the base R system, can be divided into two groups: (i) high level plot functions, and (ii) low level plot functions

High level plot functions produce 'complete' graphics and will erase existing plots if not specified otherwise. Low level plot functions are used to add graphical objects like lines, points and texts to existing plots.

10.1 SCATTER PLOTS

The most elementary plot function is plot. In its simplest form it creates a scatterplot of two input vectors. Let us consider an integer index ranging from 1 to 260 and an artificial log-return series of the same length simulated from normal random variates. Note that the cumulative values form a random walk process.¹

```
> set.seed(4711)
> Index <- 1:260
> Returns <- rnorm(260)
> plot(x = Index, y = Returns)
```

To create a plot with a title use the argument main in the plot function.

```
> plot(x = Index, y = Returns, main = "Artificial Returns")
```

¹Note that he setting of a random number seed by the function set.seed() lets you simulate exactly the same set of random numbers as we used in the example.
10.2 Line Plots

Several flavours of simple line plots can be drawn using R’s base function `plot()` selecting the appropriate `type` argument for a desired line style.

A simple line plot

For a simple line plot which connects consecutive points we have to set the option `type = "l"` in the `plot()` function. Let us return to the previous example and let us replot the data points in a different way.

```r
> par(mfrow = c(2, 1))
> Price = cumsum(Returns)
> plot(Index, Price, type = "l", main = "Line Plot")
> plot(Index, Returns, type = "h", main = "Histogram-like Vertical Lines")
```
Here the Returns are the series of 260 artificially created log-returns standardized with mean zero and variance one. Capital Price is the cumulated log-return series describing a driftless random walk which can also be interpreted as an artificial created index series.

Drawing functions or expressions

In case of drawing functions or expressions, the function `curve` can be handy, it takes some work away to produce a line graph. We show this displaying the density of the log-returns underlying a histogram plot.

```r
> hist(Returns, probability = TRUE)
> curve(dnorm(x), min(Returns), max(Returns), add = TRUE, lwd = 2)
```
Histogram of Returns

Figure 10.3: A histogram plot of the log-returns overlayed by their density function. The density line was created by the `curve()` function.

10.3 More about the `plot()` Function

The `plot()` function is very versatile function. The `plot()` function is a so called generic function. Depending on the class of the input object the function will call a specific plot method. Some examples:

Listing 10.1: Graphs produced by the generic plot function `plot()`

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot(xf)</code></td>
<td>creates a bar plot if <code>xf</code> is a vector of data type factor</td>
</tr>
<tr>
<td><code>plot(xf, y)</code></td>
<td>creates box-and-whisker plots of the numeric data in <code>y</code> for each level of <code>xf</code></td>
</tr>
<tr>
<td><code>plot(x.df)</code></td>
<td>all columns of the data frame <code>x.df</code> are plotted against each other</td>
</tr>
<tr>
<td><code>plot(ts)</code></td>
<td>creates a time series plot if <code>ts</code> is a time series object</td>
</tr>
</tbody>
</table>
The code below shows four examples of the different uses of the function `plot()`.

```r
> factorData <- factor(sample(c(rep("AMEX", times = 40), rep("NASDAQ", times = 180), rep("NYSE", times = 90))))

> tsData = ts(matrix(rnorm(64), 64, 1), start = c(2001, 1), frequency = 12)

> plot(factorData, col = "steelblue")
> plot(factorData, rnorm(length(factorData)), col = "orange")
> plot(dnorm, min(tsData[, 1]), max(tsData[, 1]), xlab = "Returns", ylab = "Density", main = "Density")
> grid()
> plot(tsData, xlab = "Index", ylab = "Returns", main = "Return Series")
> abline(h = 0)
```

10.4 Distribution Plots

R has a variety of plot functions to display the distribution of a data vector. The following function calls can be used to analyze the distribution of log-returns graphically.

Listing 10.2: Plotting functions to analyze and display financial return distributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hist</td>
<td>creates a histogram plot</td>
</tr>
<tr>
<td>truehist</td>
<td>plots a true histogram with density of total area one</td>
</tr>
<tr>
<td>density</td>
<td>computes and displays kernel density estimates</td>
</tr>
<tr>
<td>boxplot</td>
<td>produces a box-and-whisker plot</td>
</tr>
<tr>
<td>qqnorm</td>
<td>creates a normal quantile-quantile plot</td>
</tr>
<tr>
<td>qqline</td>
<td>adds a line through the first and third quartiles</td>
</tr>
<tr>
<td>qqplot</td>
<td>produces a QQ plot of two datasets</td>
</tr>
</tbody>
</table>

Note that the above functions can take several arguments for fine tuning the graph, for details we refer to the corresponding help files.

Example: Distribution of USD/EUR FX returns

In the following example we show how to plot the daily log-returns of the USD/EUR foreign exchange rate.
The foreign exchange rates can be downloaded from the FRED2 database of the US Federal Reserve Bank in St. Louis.

```r
> RATE <- "DEXUSEU"
> URL <- paste("http://research.stlouisfed.org/fred2/series/", RATE, "/", "downloaddata/", RATE, ".csv", sep = "")
> URL
> USDEUR <- read.csv(URL)
> head(USDEUR)
                  DATE VALUE
1 1999-01-04 1.1812
2 1999-01-05 1.1760
3 1999-01-06 1.1636
4 1999-01-07 1.1672
5 1999-01-08 1.1554
6 1999-01-11 1.1534
```

Figure 10.4: Different uses of the function `plot`. Factor plot, box plot, density plot, and time series plot.
The daily log-return vector is computed from the differences of the logarithms of the rates

\[\text{USDEUR.RET} = \text{diff}(\log(\text{USDEUR[,]}, 2)) \]

Example: A histogram plot

The generic function `hist()` computes a histogram of the given data values. If the argument `plot=TRUE`, the resulting object of class "histogram" is plotted by the function `plot.histogram()`, before it is returned.

\[\text{hist(USDEUR.RET, col = 2, main = "Histogram Plot"} \]

Example: A kernel density estimate

The generic function `density()` computes kernel density estimates. Its default method does so with the given kernel and bandwidth for univariate observations.

The algorithm used in `density.default()` disperses the mass of the empirical distribution function over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this approximation with a discretized version of the kernel and then uses linear approximation to evaluate the density at the specified points.

Note that there is a generic `plot()` function to plot the density.

\[\text{density} = \text{density}(\text{USDEUR.RET}) \]
\[\text{plot(density, main = "Kernel Density Estimate")} \]

Example: A quantile-quantile plot

`qqnorm()` is a generic function the default method of which produces a normal quantile-quantile plot of the values. The function `qqline()` adds a line to a normal quantile-quantile plot which passes through the first and third quartiles.

\[\text{qqnorm(USDEUR.RET, pch = 19)} \]
\[\text{qqline(USDEUR.RET)} \]

Example: A box-and-whisker plot

The function `boxplot()` produces box-and-whisker plot(s) of the given (grouped) values.

\[\text{boxplot(USDEUR.RET, col = "green", main = "Box-Plot")} \]
10.5 Pie and Bar Plots

The functions `pie()` and `barplot()` can be used to draw pie and bar plots.

Data Set - Asset weights of a portfolio

Let us consider a portfolio with the following assets weights

```r
> portfolioWeights = c(SwissBonds = 35, SwissEquities = 20, ForeignBonds = 25,
                       ForeignEquities = 10, Commodities = 5, PrivateEquities = 5)
```

Let us create plots allowing for different views on the composition of the portfolio.

Example: A vertical bar plot

The following plot command creates a vertical view on the weights bars.
10.5. **Pie and Bar Plots**

Example: A horizontal bar plot

A horizontal view can be created by the following R command.

```r
> barplot(sort(portfolioWeights), horiz = TRUE, las = 1, col = heat.colors(6),
   space = 1)
> text(33.3, 1.5, "%", cex = 1.8)
```

Example: A pie plot

And the last example for the weights plot show how to create a pie plot.

```r
> pie(sort(portfolioWeights), init.angle = 20, col = heat.colors(6))
> abline(h = -1)
> mtext(side = 1, line = -0.2, "Portfolio Weights", cex = 0.9,
   adj = 0)
```

Example: Plotting major stock market capitalizations

Data Set - Major stock market capitalizations

The example data set Capitalization lists the stock market capitalizations in USD of the world's major stock markets for the years 2003 to 2008.

That the data records fit in one printed line, we display the capitalization in units of 1000.

```r
> Cap = floor(Capitalization/1000)
> Cap

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euronext US</td>
<td>1328</td>
<td>12707</td>
<td>3632</td>
<td>15421</td>
<td>15650</td>
<td>9208</td>
</tr>
<tr>
<td>TSX Group</td>
<td>888</td>
<td>1177</td>
<td>1482</td>
<td>1700</td>
<td>2186</td>
<td>1033</td>
</tr>
<tr>
<td>Australian SE</td>
<td>585</td>
<td>776</td>
<td>804</td>
<td>1095</td>
<td>1298</td>
<td>683</td>
</tr>
<tr>
<td>Bombay SE</td>
<td>278</td>
<td>386</td>
<td>553</td>
<td>818</td>
<td>1819</td>
<td>647</td>
</tr>
<tr>
<td>Hong Kong SE</td>
<td>714</td>
<td>861</td>
<td>1054</td>
<td>1714</td>
<td>2654</td>
<td>1328</td>
</tr>
<tr>
<td>NSE India</td>
<td>252</td>
<td>363</td>
<td>515</td>
<td>774</td>
<td>1660</td>
<td>600</td>
</tr>
<tr>
<td>Shanghai SE</td>
<td>360</td>
<td>314</td>
<td>286</td>
<td>517</td>
<td>3694</td>
<td>1425</td>
</tr>
<tr>
<td>Tokyo SE</td>
<td>2953</td>
<td>3557</td>
<td>4572</td>
<td>4614</td>
<td>4330</td>
<td>3115</td>
</tr>
<tr>
<td>BME Spanish SE</td>
<td>726</td>
<td>940</td>
<td>959</td>
<td>1322</td>
<td>1781</td>
<td>948</td>
</tr>
<tr>
<td>Deutsche Boerse</td>
<td>1079</td>
<td>1194</td>
<td>1221</td>
<td>1637</td>
<td>2105</td>
<td>1110</td>
</tr>
<tr>
<td>London SE</td>
<td>2468</td>
<td>2865</td>
<td>3058</td>
<td>3794</td>
<td>3851</td>
<td>1868</td>
</tr>
<tr>
<td>Euronext EU</td>
<td>2676</td>
<td>2441</td>
<td>2706</td>
<td>3712</td>
<td>4222</td>
<td>2101</td>
</tr>
<tr>
<td>SIX SE</td>
<td>727</td>
<td>826</td>
<td>935</td>
<td>1212</td>
<td>1271</td>
<td>857</td>
</tr>
</tbody>
</table>
Figure 10.6: Different views on the composition of a portfolio. The weights of each asset class are printed as pies or vertical and horizontal bars.

Example: Bar plots of stock market capitalizations

Now we want to express the information graphically in form of a vertical and horizontal bar plot and in form of a pie plot

```r
> barplot(t(Cap)/1e+06, beside = TRUE, las = 2, ylab = "Capitalization [Mio USD]"
> title(main = "Major Stock Markets")
> mtext(side = 3, "2003 - 2008")
> barplot(Cap/1e+06, beside = TRUE, ylab = "Capitalization [Mio USD]"
```

10.6 Stars- and Segments Plots

Stars and segments plots consist of a sequence of equi-angular spokes, called radii, with each spoke representing one of the variables. The data length of a spoke or segment is a measure to the magnitude of the variable which gives the plot a star-like appearance.
10.6. Stars- and Segments Plots

![Matrix Bar Plot of stock market capitalization.](image)

Using the data from the previous section we can draw a graph which shows the growth of the stock markets over the last 5 years and the decline in 2008. Note that the growth of the markets is shown on a logarithmic scale.

```r
> palette(rainbow(13, s = 0.6, v = 0.75))
> stars(t(log(Cap)), draw.segments = TRUE, ncol = 3, nrow = 2,
 key.loc = c(4.6, -0.5), mar = c(15, 0, 0, 0))
> mtext(side = 3, line = 2.2, text = "Growth and Decline of Major Stock Markets",
 cex = 1.5, font = 2)
> abline(h = 0.9)
```

Note that to find a nice placement of the stars or segments one has sometimes to fiddle around a little bit with the positioning arguments of the function `stars()`.
10.7 **Bi- and Multivariate Plots**

When you have two or more variables (in a data frame) you can use the following functions to display their relationship.

**Listing 10.3: A list of plotting functions to analyze bi and multivariate data sets**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pairs</td>
<td>for data frames the function plots each column against each other</td>
</tr>
<tr>
<td>symbols</td>
<td>creates a scatterplot where the symbols can vary in size</td>
</tr>
<tr>
<td>dotchart</td>
<td>creates a dot plot that can be grouped by levels of a factor</td>
</tr>
<tr>
<td>contour</td>
<td>creates a contour plot or adds contour lines to an existing plot</td>
</tr>
<tr>
<td>filled.contour</td>
<td>produces a contour plot with the areas between the contours filled in solid color</td>
</tr>
</tbody>
</table>
10.7. Bi- and Multivariate Plots

image produces an image plot based on a grid of colored or gray-scale rectangles with colors corresponding to the values of the third variable.

persp draws perspective plots of surfaces over the $x$-$y$ plane.

The code below demonstrates some of the above functions. First let us define some data and set the layout.

```r
> x <- y <- seq(-4 * pi, 4 * pi, length = 27)
> r <- sqrt(outer(x^2, y^2, "+"))
> z <- cos(r^2) * exp(-r/6)
```

Example: An image plot

The following example shows how to produce an image plot.

```r
> image(z, axes = FALSE, main = "Math can be beautiful ...", xlab = expression(cos(r^2) * e^{-r/6}))
```

Example: A dot chart

Now we create a dot chart using the Virginia death rates provided by R’s demo data set VADeaths.

```r
> VADeaths
Rural Male Rural Female Urban Male Urban Female
50-54 11.7 8.7 15.4 8.4
55-59 18.1 11.7 24.3 13.6
60-64 26.9 20.3 37.0 19.3
65-69 41.0 30.9 54.6 35.1
70-74 66.0 54.3 71.1 50.0
```

```r
> dotchart(t(VADeaths), xlim = c(0, 100), cex = 0.6)
> title(main = "Insurance - Death Rates in VA")
```

Example: A symbols plot

Next, we plot thermometers where a proportion of the thermometer is filled based on Ozone value.

```r
> symbols(airquality$Temp, airquality$Wind, thermometers = cbind(0.07, 0.3, airquality$Ozone/max(airquality$Ozone, na.rm = TRUE)), inches = 0.15)
> title(main = "Airquality Data")
```
Math can be beautiful ...

\[ \cos(r^3)e^{-r/6} \]

**Example: A perspective plot**

Finally we create a perspective plot

```r
> myf <- function(x, y) {
 sin(x) + cos(y)
}
> x <- y <- seq(0, 2 * pi, len = 25)
> z <- outer(x, y, myf)
> persp(x, y, z, theta = 45, phi = 45, shade = 0.2)
```
CHAPTER 11

CUSTOMIZING PLOTS

To change the layout of a plot or to change a certain aspect of a plot such as the line type or symbol type, you will need to change certain graphical parameters. We have seen already some in the previous section.

11.1 MORE ABOUT PLOT FUNCTION ARGUMENTS

Here are some of the arguments you might want to specify for plots.

---

**Listing 11.1: Selected arguments for plot functions**

<table>
<thead>
<tr>
<th>Plot Arguments:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>what type of plot should be created?</td>
</tr>
<tr>
<td>axes</td>
<td>draw or suppress to plot the axes</td>
</tr>
<tr>
<td>ann</td>
<td>draw or suppress to add title and axis labels</td>
</tr>
<tr>
<td>pch</td>
<td>select the type of plotting symbol</td>
</tr>
<tr>
<td>cex</td>
<td>select the size of plotting symbol and text</td>
</tr>
<tr>
<td>xlab, ylab</td>
<td>names of the labels for the x and y axes</td>
</tr>
<tr>
<td>main</td>
<td>the (main) title of the plot</td>
</tr>
<tr>
<td>xlim, ylim</td>
<td>the range of the x and y axes</td>
</tr>
<tr>
<td>log</td>
<td>names of the axes which are to be logarithmic</td>
</tr>
<tr>
<td>col, bg</td>
<td>select colour of lines, symbols, background</td>
</tr>
<tr>
<td>lty, lwd</td>
<td>select line type, line width</td>
</tr>
<tr>
<td>las</td>
<td>select orientation of the text of axis labels</td>
</tr>
</tbody>
</table>

Notice that some of the relevant parameters are documented in `help(plot)` or `plot.default()`, but many only in `help(par)`. The function `par()` is for setting or querying the values of graphical parameters in traditional R graphics.

**How to modify the plot type**

Settings for the plot type can be modified using the following identifiers:
Listing 11.2: Type argument specifications for plot functions

<table>
<thead>
<tr>
<th>Plot Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>specifies the type of plot</td>
</tr>
<tr>
<td>&quot;p&quot;</td>
<td>point plot (default)</td>
</tr>
<tr>
<td>&quot;l&quot;</td>
<td>line plot</td>
</tr>
<tr>
<td>&quot;b&quot;</td>
<td>both points and lines</td>
</tr>
<tr>
<td>&quot;o&quot;</td>
<td>overplotted points and lines</td>
</tr>
<tr>
<td>&quot;h&quot;</td>
<td>histogram like</td>
</tr>
<tr>
<td>&quot;s&quot;</td>
<td>steps</td>
</tr>
<tr>
<td>&quot;n&quot;</td>
<td>no plotting</td>
</tr>
</tbody>
</table>

Note that by default, the type argument is set to "p". If you want to draw the axes first and add points, lines and other graphical elements later, you should use type="n".

How to select a font

With the font argument, an integer in the range from 1 to 5, we can select the type of fonts:

Listing 11.3: Font arguments for plot functions

<table>
<thead>
<tr>
<th>Plot Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>font</td>
<td>integer specifying which font to use for text</td>
</tr>
<tr>
<td>font.axis</td>
<td>font number to be used for axis annotation</td>
</tr>
<tr>
<td>font.lab</td>
<td>font number to be used for x and y labels</td>
</tr>
<tr>
<td>font.main</td>
<td>font number to be used for plot main titles</td>
</tr>
<tr>
<td>font.sub</td>
<td>font number to be used for plot sub-titles</td>
</tr>
</tbody>
</table>

If possible, device drivers arrange so that 1 corresponds to plain text (the default), 2 to bold face, 3 to italic and 4 to bold italic. Also, font 5 is expected to be the symbol font, in Adobe symbol encoding.

How to modify the size of fonts

With the argument cex, a numeric value which represents a multiplier, we can modify the size of fonts

Listing 11.4: cex arguments for plot functions

<table>
<thead>
<tr>
<th>Plot Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cex</td>
<td>magnification of fonts/symbols relative to default</td>
</tr>
<tr>
<td>cex.axis</td>
<td>magnification for axis annotation relative to cex</td>
</tr>
<tr>
<td>cex.lab</td>
<td>magnification for x and y labels relative to cex</td>
</tr>
<tr>
<td>cex.main</td>
<td>magnification for main titles relative to cex</td>
</tr>
<tr>
<td>cex.sub</td>
<td>magnification for sub-titles relative to cex</td>
</tr>
</tbody>
</table>
11.1. More About Plot Function Arguments

How to orient axis labels

The argument *las*, an integer value ranging from 0 to 3, allows us to determine the orientation of the axis labels.

```
Plot Argument:
las orientation
 0 always parallel to the axis [default]
 1 always horizontal
 2 always perpendicular to the axis
 3 always vertical
```

Note that other string/character rotation (via argument *srt* to *par*) does not affect the axis labels.

How to select the line type

The argument *lty* sets the line type. Line types can either be specified as an integer, or as one of the character strings “blank”, “solid”, “dashed”, “dotted”, “dotdash”, “longdash”, or “twodash”, where “blank” uses invisible lines, i.e. does not draw them.

```
Plot Argument:
lty sets line type to
 0 blank
 1 solid (default)
 2 dashed
 3 dotted
 4 dotdash
 5 longdash
 6 twodash
```

Example: Swiss economic data: real GDP vs. population

At the end of this section we present a graph, which shows the usage of some of the arguments presented above. The example shows the correlation between the growth of the Real GDP of Switzerland and the growth of its population.

```
> library(fEcofin)
> swissEconomy

Time Series:
Start = 1964
```
Now let us plot the growth in the Swiss Real GDP versus the growth of the population:

```r
> plot(x = swissEconomy[, "GDPR"], y = swissEconomy[, "POPU"],
 xlab = "GDP REAL", ylab = "POPULATION", main = "POPULATION ~ GDP REAL",
 pch = 19, col = "orange", las = 2, font.main = 3,)
```

11.2 **Graphical Parameters**

The function `par()` can be used to set or query graphical parameters. Parameters can be set by specifying them as arguments to `par()` in `tag = value` form, or by passing them as a list of tagged values. A call to the function `par()` has the following form
11.2. **Graphical Parameters**

![Graphical Parameters Diagram](image)

**FIGURE 11.1:** Population versus GDP Real Plot.

In the above code the graphical parameter `tag1` is set to `value1`, graphical parameter `tag2` is set to `value2` and so on. Note that some graphical parameters are read only and cannot be changed. Run the function `par()` with no arguments to get a complete listing of the graphical parameters and their current values. Show the first ten parameters.

```r
> unlist(par()[1:10])
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xlog</code></td>
<td>&quot;FALSE&quot;</td>
</tr>
<tr>
<td><code>ylog</code></td>
<td>&quot;FALSE&quot;</td>
</tr>
<tr>
<td><code>adj</code></td>
<td>&quot;0.5&quot;</td>
</tr>
<tr>
<td><code>ann</code></td>
<td>&quot;TRUE&quot;</td>
</tr>
<tr>
<td><code>ask</code></td>
<td>&quot;FALSE&quot;</td>
</tr>
<tr>
<td><code>bg</code></td>
<td>&quot;transparent&quot;</td>
</tr>
<tr>
<td><code>bty</code></td>
<td>&quot;o&quot;</td>
</tr>
<tr>
<td><code>cex</code></td>
<td>&quot;1&quot;</td>
</tr>
<tr>
<td><code>cex.axis</code></td>
<td>&quot;1&quot;</td>
</tr>
<tr>
<td><code>cex.lab</code></td>
<td>&quot;1&quot;</td>
</tr>
</tbody>
</table>

Once you set a graphical parameter with the `par()` function, that graphical parameter will keep its value until you (i) set the graphical parameter to
another value with the \texttt{par()} function, or you (ii) close the graph. R will use the default settings when you create a new plot.

There are several parameters which can only be set by a call to \texttt{par()}

\begin{verbatim}
"ask",
"fig", "fin",
"lheight",
"mai", "mar", "mex", "mfcol", "mfrow", "mfg",
"new",
"oma", "omd", "omi",
"pin", "plt", "ps", "pty",
"usr",
"xlog", "ylog"
\end{verbatim}

\textbf{Listing 11.7: A list of arguments used for the \texttt{par} function}

<table>
<thead>
<tr>
<th>\texttt{par} Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{adj}</td>
<td>Determines the way in which text strings are justified</td>
</tr>
<tr>
<td>\texttt{ann}</td>
<td>Determines if a plot should be annotated with titles or not</td>
</tr>
<tr>
<td>\texttt{ask}</td>
<td>Determines if the user will be asked interactively for input</td>
</tr>
<tr>
<td>\texttt{bg}</td>
<td>The color to be used for the background of the device region</td>
</tr>
<tr>
<td>\texttt{bty}</td>
<td>Determines the type of box which is drawn about plots</td>
</tr>
<tr>
<td>\texttt{cex.*}</td>
<td>Gives amount by which text and symbols should be magnified</td>
</tr>
<tr>
<td>\texttt{col.*}</td>
<td>A specification for the default plotting colors</td>
</tr>
<tr>
<td>\texttt{crt}</td>
<td>A value specifying how single characters should be rotated</td>
</tr>
<tr>
<td>\texttt{family}</td>
<td>The name of a font family for drawing text</td>
</tr>
<tr>
<td>\texttt{fg}</td>
<td>The color to be used for the foreground of plots</td>
</tr>
<tr>
<td>\texttt{fig}</td>
<td>A vector which gives the coordinates of the figure region</td>
</tr>
<tr>
<td>\texttt{fin}</td>
<td>The figure region dimensions, width and height</td>
</tr>
<tr>
<td>\texttt{font.*}</td>
<td>Specifies which font to use for text</td>
</tr>
<tr>
<td>\texttt{lab}</td>
<td>Modifies the default way that axes are annotated.</td>
</tr>
<tr>
<td>\texttt{las}</td>
<td>Determines the style of axis labels.</td>
</tr>
<tr>
<td>\texttt{lend}</td>
<td>Determines the line end style</td>
</tr>
<tr>
<td>\texttt{lheight}</td>
<td>The line height multiplier</td>
</tr>
<tr>
<td>\texttt{ljoin}</td>
<td>The line join style</td>
</tr>
<tr>
<td>\texttt{lmmitre}</td>
<td>The line mitre limit</td>
</tr>
<tr>
<td>\texttt{lty}</td>
<td>The line type</td>
</tr>
<tr>
<td>\texttt{lwd}</td>
<td>The line width</td>
</tr>
<tr>
<td>\texttt{mai}</td>
<td>Gives the margin size</td>
</tr>
<tr>
<td>\texttt{mar}</td>
<td>Gives the number of lines of margin on the four sides</td>
</tr>
<tr>
<td>\texttt{mex}</td>
<td>Character expansion factor to describe coordinates in the margins</td>
</tr>
<tr>
<td>\texttt{mfcol}</td>
<td>Determines how subsequent figures will be drawn on one page</td>
</tr>
<tr>
<td>\texttt{mfrow}</td>
<td>Determines how subsequent figures will be drawn on one page</td>
</tr>
<tr>
<td>\texttt{mfg}</td>
<td>Indicates which figure in an array of figures is to be drawn</td>
</tr>
<tr>
<td>\texttt{next}</td>
<td></td>
</tr>
<tr>
<td>\texttt{mgp}</td>
<td>Margin line for the axis title, labels and axis line</td>
</tr>
<tr>
<td>\texttt{mkh}</td>
<td>Height of symbols when the value of \texttt{pch} is an integer</td>
</tr>
<tr>
<td>\texttt{new}</td>
<td>Should the next plotting command clean the frame before drawing</td>
</tr>
<tr>
<td>\texttt{oma}</td>
<td>Gives the size of the outer margins in lines of text.</td>
</tr>
<tr>
<td>\texttt{omd}</td>
<td>Gives the region inside outer margins</td>
</tr>
</tbody>
</table>
11.3 MARGINS, PLOT AND FIGURE REGIONS

A graph consists of three regions. A plot region surrounded by a figure region that is in turn surrounded by four outer margins. The top, left, bottom and right margins. See figure ???. Usually the high level plot functions create points and lines in the plot region.

Outer margins

The outer margins can be set with the oma parameter, the four default values are set to zero. The margins surrounding the plot region can be set with the mar parameter. Experiment with the mar and oma parameters to see the effects. Show the default parameters for mar and oma, change these values, and finally reset them.

> Par = par(c("mar", "oma"))
> par(oma = c(1, 1, 1, 1))
> par(mar = c(2.5, 2.1, 2.1, 1))
> plot(rnorm(100))
> par(oma = Par$oma)
> par(mar = Par$mar)

Multiple plots on one page: mfrow and mfcol

Use the parameter mfrow or mfcol to create multiple graphs on one layout. Both parameters are set as follows:
> r = 2
> k = 3
> par(mfrow = c(r, k))
> par(mfcol = c(r, k))

where \( r \) is the number of rows and \( k \) the number of columns. The graphical parameter `mfrow` fills the layout by row and `mfcol` fills the layout by column. When the `mfrow` parameter is set, an empty graph window will appear and with each high-level plot command a part of the graph layout is filled.

**Multiple plots on one page: layout()**

A more flexible alternative to set the layout of a plotting window is to use the function `layout()`. An example, three plots are created on one page, the first plot covers the upper half of the window. The second and third plot share the lower half of the window.
11.3. MARGINS, PLOT AND FIGURE REGIONS

Figure 11.3: Plot layout. The plotting area of this graph was divided with the `layout()` function.

```r
> nf = layout(rbind(c(1, 1), c(2, 3)))
```

Note that if you are not sure how layout has divided the window use the function `layout.show()` to display the window splits

```r
> plot(rnorm(100), type = "l")
> hist(rnorm(100))
> qqnorm(runif(100))
```

The matrix argument in the `layout` function can contain 0's (zero's), leaving a certain sub plot empty. For example:

```r
> nf = layout(rbind(c(1, 1), c(0, 2)))
```
11.4 More About Colours

The R environment has in its default package several function to handle colours.

Named colours

The function `colors()` returns the built-in color names which R knows about. These 657 color names can be used with a `col=` specification in graphics functions such as `plot()`. The list too long to be printed, but let us show the different shades of "blue"

```r
> Colors = colors()
> Colors[grep("blue", Colors)]

[1] "aliceblue" "blue" "blue1" "blue2"
[5] "blue3" "blue4" "blueviolet" "cadetblue"
[9] "cadetblue1" "cadetblue2" "cadetblue3" "cadetblue4"
[13] "cornflowerblue" "darkblue" "darkslateblue" "deepskyblue"
[17] "deepskyblue1" "deepskyblue2" "deepskyblue3" "deepskyblue4"
[21] "dodgerblue" "dodgerblue1" "dodgerblue2" "dodgerblue3"
[25] "dodgerblue4" "lightblue" "lightblue1" "lightblue2"
[29] "lightblue3" "lightblue4" "lightskyblue" "lightskyblue1"
[33] "lightskyblue2" "lightskyblue3" "lightskyblue4" "lightslateblue"
[37] "lightsteelblue" "lightsteelblue1" "lightsteelblue2" "lightsteelblue3"
[41] "lightsteelblue4" "mediumblue" "mediumslateblue" "midnightblue"
[45] "navyblue" "powderblue" "royalblue" "royalblue1"
[49] "royalblue2" "royalblue3" "royalblue4" "skyblue"
[53] "skyblue1" "skyblue2" "skyblue3" "skyblue4"
[57] "slateblue" "slateblue1" "slateblue2" "slateblue3"
[61] "slateblue4" "steelblue" "steelblue1" "steelblue2"
[65] "steelblue3" "steelblue4"
```

An even wider variety of colours can be used from derived colour palettes such as `rainbow()`, `heat.colors()`, etc., or can be created with primitives `rgb()` and `hsv()`.

Colour palettes

With the function `palette()` you can view or manipulate the color palette which is used when the function argument `col=` has a numeric index. Without any argument the function returns the current colour palette in use

```r
> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
[8] "gray"
```

The argument

```r
> args(palette)
```
function (value)
NULL

If the argument value has length 1, it is taken to be the name of a built in colour palette. If value has length greater than 1 it is assumed to contain a description of the colors which are to make up the new palette, either by name or by red, green, blue, RGB, levels.

**Listing 11.8: A list of R’s colour palettes**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rainbow</td>
<td>Rainbow colour palette</td>
</tr>
<tr>
<td>heat.colors</td>
<td>Heat colours palette</td>
</tr>
<tr>
<td>terrain.colors</td>
<td>Terrain colours palette</td>
</tr>
<tr>
<td>topo.colors</td>
<td>Topographic colours palette</td>
</tr>
<tr>
<td>cm.colors</td>
<td>CM colours palette</td>
</tr>
</tbody>
</table>

The following call creates 25 rainbow colours

```r
> myRainbow = rainbow(25)
> palette(myRainbow)
> matplot(outer(1:100, 1:25), type = "l", lty = 1, lwd = 2, col = 1:25,
 main = "Rainbow Colors")
```

Here the R function `matplot()` plots the columns of one matrix against the columns of another.

The next example shows how to create a gray scale of 25 gray levels

```r
> myGrays = gray(seq(0, 0.9, length = 25))
> palette(myGrays)
> matplot(outer(1:100, 1:25), type = "l", lty = 1, lwd = 2, col = 1:25,
 main = "Grays")
```

To reset to the default palette type

```r
> palette("default")
```

Conceptually, all of the aolor palette functions use a line cut or part of a line cut out of the 3-dimensional color space. Some applications such as contouring require a palette of colors which do not wrap around to give a final color close to the starting one. With rainbow,

```r
> args(rainbow)
function (n, s = 1, v = 1, start = 0, end = max(1, n - 1)/n,
 gamma = 1, alpha = 1)
NULL
```

the parameters start and end can be used to specify particular subranges. The following values can be used when generating such a subrange: red=0, yellow=1/6, green=2/6, cyan=3/6, blue=4/6 and magenta=5/6. The following plot shows some color wheels
11.5 **Adding Graphical Elements to an Existing Plot**

Once you have created a plot you may want to add something to it. This can be done with low-level plot functions.

**Listing 11.9: A List of Plotting Functions to Add Graphical Elements to an Existing Plot**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td>adds points to a plot</td>
</tr>
<tr>
<td>lines</td>
<td>adds connected line segments to a plot</td>
</tr>
<tr>
<td>abline</td>
<td>adds straight lines through a plot</td>
</tr>
</tbody>
</table>
11.5. Adding Graphical Elements to an Existing Plot

Figure 11.5: Colour Wheels from the rainbow, heat, topo, and gray scale palettes.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrows</td>
<td>adds arrows between pairs of points</td>
</tr>
<tr>
<td>title</td>
<td>adds a title to a plot</td>
</tr>
<tr>
<td>text</td>
<td>adds text to a plot at the specified coordinates</td>
</tr>
<tr>
<td>mtext</td>
<td>adds text in the margins of a plot</td>
</tr>
<tr>
<td>legend</td>
<td>adds a legend to a plot</td>
</tr>
</tbody>
</table>

Adding lines

The functions `lines()` and `abline()` are used to add lines on an existing plot. The function `lines()` connects points given by the input vector. The function `abline()` draws straight lines with a certain slope and intercept.

```r
> plot(c(-2, 2), c(-2, 2))
> lines(c(0, 2), c(0, 2), col = "red")
> abline(a = 1, b = 2, lty = 2)
> abline(v = 1, lty = 3, col = "blue", lwd = 3)
```
**Adding arrows and line segments**

The functions `arrows()` and `segments()` are used to draw arrows and line segments.

```r
> arrows(c(0, 0, 0), c(1, 1, 1), c(0, 0.5, 1), c(1.2, 1.5, 1.7), length = 0.1)
```

**Adding Points**

The function `points()` is used to add extra points and symbols to an existing graph. The following code adds some extra points to the previous graph.

```r
> points(rnorm(4), rnorm(4), pch = 3, col = "blue")
> points(rnorm(4), rnorm(4), pch = 4, cex = 3, lwd = 2)
> points(rnorm(4), rnorm(4), pch = "K", col = "green")
```

**Adding titles**

The function `title` can be used to add a title, a subtitle and/or x- and y-labels to an already existing plot.

```r
> title(main = "My title", sub = "My Subtitle")
```

**Adding text**

The function `text()` can be used to add text to an existing plot.

```r
> text(0, 0, "Some Text")
> text(1, 1, "Rotated Text", srt = 45)
```

The first two arguments of `text()` can be vectors specifying x, y coordinates, then the third argument must also be a vector. This character vector must have the same length and contains the texts that will be printed at the coordinates.

**Adding margin text**

The function `mtext` is used to place text in one of the four margins of the plot.

```r
> mtext("Text in the margin", side = 4, col = "grey")
```

**Adding a legend**

The function `legend()` ...
11.5. Adding Graphical Elements to an Existing Plot

Adding mathematical expressions in graphs

In R you can place ordinary text on plots, but also special symbols, Greek characters and mathematical formulae on the graph. You must use an R expression inside the `title`, `legend`, `mtext` or `text` function. This expression is interpreted as a mathematical expression, similar to the rules in LaTeX.

\[
\frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

See for more information the help of the `plotmath()` function.
11.6 Controlling the Axes

When you create a graph, the axes and the labels of the axes are drawn automatically with default settings. To change those settings you specify the graphical parameters that control the axis, or use the axis function.

*The axis argument*

One approach would be to first create the plot without the axis with the `axes = FALSE` argument, and then draw the axis using the low-level `axis` function.

```r
> x <- rnorm(100)
> y <- rnorm(100)
> plot(x, y, axes = FALSE)
> axis(side = 1)
> axis(side = 2)
```

*The arguments side and pos*

The `side` argument represents the side of the plot for the axis (1 for bottom, 2 for left, 3 for top, and 4 for right). Use the `pos` argument to specify the x or y position of the axis.

```r
> x <- rnorm(100)
> y <- rnorm(100)
> plot(x, y, axes = FALSE)
> axis(side = 1, pos = 0)
> axis(side = 2, pos = 0)
```

*The arguments at and labels*

The location of the tick marks and the labels at the tick marks can be specified with the arguments `at` and `labels` respectively.

```r
> x <- rnorm(100)
> y <- rnorm(100)
> plot(x, y, axes = FALSE)
> xtickplaces <- seq(-2, 2, l = 8)
> ytickplaces <- seq(-2, 2, l = 6)
> axis(side = 1, at = xtickplaces)
> axis(side = 2, at = ytickplaces)
```

```r
> x <- 1:20
> y <- rnorm(20)
> plot(x, y, axes = FALSE)
> xtickplaces <- 1:20
> ytickplaces <- seq(-2, 2, l = 6)
> xlabels <- paste("day", 1:20, sep = " ")
> axis(side = 1, at = xtickplaces, labels = xlabels)
> axis(side = 2, at = ytickplaces)
```
Notice that R does not plot all the axis labels. R has a way of detecting overlap, which then prevents plotting all the labels. If you want to see all the labels you can adjust the character size, use the `cex.axis` parameter.

```r
> x <- 1:20
> y <- rnorm(20)
> plot(x, y, axes = FALSE)
> xtickplaces <- 1:20
> ytickplaces <- seq(-2, 2, l = 6)
> xlabels <- paste("day", 1:20, sep = " ")
> axis(side = 1, at = xtickplaces, labels = xlabels, cex.axis = 0.5)
> axis(side = 2, at = ytickplaces)
```

**The argument `tck`**

Another useful parameter that you can use is the `tck` argument. It specifies the length of tick marks as a fraction of the smaller of the width or height of the plotting region. In the extreme case `tck = 1`, grid lines are drawn.

**Logarithmic axis style**

To draw logarithmic x or y axis use `log = "x"` or `log = "y"`, if both axis need to be logarithmic use `log = "xy"`.

```r
> axis(side = 1, at = c(5, 10, 15, 20), labels = rep("", 4), tck = 1,
 lty = 2)
> x <- runif(100, 1, 1e+05)
> y <- runif(100, 1, 1e+05)
> plot(x, y, log = "xy", col = "grey")
```
**Figure 11.7:** Examples of axis controls
CHAPTER 12

GRAPHICAL DEVICES

Before a graph can be generated a so-called graphical device has to be opened. In most cases this will be a window on screen, but it may also be an eps, or pdf file, for example. Type

> ?Devices

for an overview of all available devices.

12.1 AVAILABLE DEVICES

The devices in R are:

LISTING 12.1: R’S GRAPHICS DEVICES.

<table>
<thead>
<tr>
<th>Device:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>windows</td>
<td>The graphics driver for Windows</td>
</tr>
<tr>
<td>postscript</td>
<td>Writes PostScript graphics to a file</td>
</tr>
<tr>
<td>pdf</td>
<td>Writes PDF graphics to a file</td>
</tr>
<tr>
<td>pictex</td>
<td>Writes LaTeX/PicTeX graphics to a file</td>
</tr>
<tr>
<td>png</td>
<td>The PNG bitmap device</td>
</tr>
<tr>
<td>jpeg</td>
<td>The JPEG bitmap device</td>
</tr>
<tr>
<td>bmp</td>
<td>The BMP bitmap device</td>
</tr>
<tr>
<td>xfig</td>
<td>Device for XFIG graphics file format</td>
</tr>
<tr>
<td>bitmap</td>
<td>bitmap pseudo-device via GhostScript</td>
</tr>
<tr>
<td>x11</td>
<td>The graphics device for the X11 Window system</td>
</tr>
<tr>
<td>quartz</td>
<td>The native graphics device on Mac OS X</td>
</tr>
<tr>
<td>cairo_pdf</td>
<td>PDF device based on cairo graphics</td>
</tr>
<tr>
<td>cairo_ps</td>
<td>PS device based on cairo graphics</td>
</tr>
</tbody>
</table>

12.2 DEVICE MANAGEMENT UNDER WINDOWS


How to show the default device

When a plot command is given without opening a graphical device first, then a default device is opened. Use the command options("devices")() to see what the default device is, usually it is the windows device.

How to open a new device

We could, however, also open a device ourselves first. The advantages of this are:

1. we can open the device without using the default values
2. When running several high level plot commands without explicitly opening a device only the last command will result in a visible graph, since high level plot commands overwrite existing plots. This can be prevented by opening separate devices for separate plots.

Let us open two devices the first for a scatter plot and the second for a histogram plot.

```r
> dev.new()
> plot(rnorm(100))
> dev.new()
> hist(rnorm(100))
```

Now two devices are open. In the first we have the scatter plot and in the second we have the histogram plot.

How to show a list of open devices

The number of open devices can be obtained by using the function dev.list()

```r
> dev.list()
```

Which is the current active device

When more than one device is open, there is one active device and one or more inactive devices. To find out which device is active the function dev.cur() can be used.

```r
> dev.cur()
```

Low-level plot commands are placed on the active device. In the above example the command

```r
> title("Scatter Plot")
```

will result in a title on the active graph.
12.3. List of Device Functions

How to make another device active

Another device can be made active by using the function `dev.set()`.

```r
> dev.set(which = 2)
> title("Histogram Plot")
```

How to close devices

A device can be closed using the function `dev.off()`. The active device is then closed. For example, to export an R graph to a png file so that it can be used in a web site, use the `png` device:

```r
> png("test.png")
> plot(rnorm(100))
> dev.off()
```

12.3 List of Device Functions

Here is a summary list of R’s device functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dev.cur</td>
<td>returns number and name of the active device</td>
</tr>
<tr>
<td>dev.list</td>
<td>returns the numbers of all open devices</td>
</tr>
<tr>
<td>dev.next</td>
<td>returns number and name of the next device</td>
</tr>
<tr>
<td>dev.prev</td>
<td>returns number and name of the previous device</td>
</tr>
<tr>
<td>dev.off</td>
<td>shuts down the specified device</td>
</tr>
<tr>
<td>dev.set</td>
<td>makes the specified device the active device</td>
</tr>
<tr>
<td>dev.new</td>
<td>opens a new device</td>
</tr>
<tr>
<td>graphics.off</td>
<td>shuts down all open graphics devices</td>
</tr>
</tbody>
</table>
PART IV

STATISTICS AND INFERENCE
CHAPTER 13

BASIC STATISTICAL FUNCTIONS

Financial returns are generated from a stochastic process. To compare the returns from different financial instruments we can investigate them in several directions. What are the basic statistical properties, can we find a distribution function which fits the financial returns properly, what are the fitted parameters, are the returns drawn from a normal distribution? We can ask such and many other questions to compute and test the statistical properties of financial returns.

The base installation of R contains many functions for calculating statistical summaries, for data analysis and for statistical modelling. Even more functions are available in all the contributed R packages on CRAN and in the Rmetrics packages.

In this section we will present and discuss some of these functions and will explore to some extent the possibilities we have to analyse real world financial data sets.

13.1 STATISTICAL SUMMARIES

A number of functions return statistical summaries. The following table contains a list of only some of the statistical functions provided by R. The names of the functions usually speak for themselves.

<table>
<thead>
<tr>
<th>Listing 13.1: SOME FUNCTIONS THAT CALCULATE STATISTICAL SUMMARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Function:</strong></td>
</tr>
<tr>
<td>acf</td>
</tr>
<tr>
<td>cor</td>
</tr>
<tr>
<td>mad</td>
</tr>
<tr>
<td>mean</td>
</tr>
<tr>
<td>median</td>
</tr>
<tr>
<td>quantile</td>
</tr>
<tr>
<td>range</td>
</tr>
<tr>
<td>var, cov</td>
</tr>
</tbody>
</table>
Example: Hedge funds location and dispersion measures

As an example we compute location and dispersion measures from monthly performance measures of hedge funds in the year 2005. The data are taken from the web www.hennesseegroup.com where one can find also the data for the years after 2005 and for additional indices. The monthly return values of four stock market indices are added for comparison. The presented data set can be downloaded from the Rmetrics web site.

```r
> data.frame(HedgeFund, row.names = NULL)
 JAN05 FEB05 MAR05 APR05 MAY05 JUN05 JUL05 AUG05 SEP05 OCT05 NOV05 DEC05
1 1.16 -1.18 -1.95 1.88 1.87 2.65 0.39 1.33 -1.65 1.64 1.37
2 0.10 0.90 -0.31 -1.55 0.05 1.22 1.75 0.89 1.10 -0.82 0.82 1.20
3 0.59 2.28 -1.07 0.73 1.00 1.33 1.87 1.21 3.48 -1.72 2.23 3.05
4 0.91 -0.48 -1.37 -2.89 -1.42 1.07 1.21 0.73 1.23 -0.21 -0.09 0.75
5 0.33 1.36 0.34 -0.60 -0.09 1.14 1.70 1.16 1.43 -0.42 1.20 1.62
6 0.18 1.69 -0.40 -2.15 0.83 1.80 2.42 1.18 1.37 -2.62 1.42 1.62
7 0.30 1.48 -0.85 -0.99 0.46 1.33 1.73 1.16 0.65 -0.29 0.75 1.15
8 0.55 0.73 0.03 -0.20 0.43 0.70 0.44 0.26 0.91 -0.16 0.65 0.31
9 0.13 0.91 0.44 -1.04 0.75 0.86 1.24 0.57 0.01 -1.51 1.25 1.03
10 0.06 0.96 -0.17 -1.38 -0.29 0.92 2.01 0.97 0.96 -0.58 0.56 1.38
11 -0.89 1.65 -0.74 -2.04 0.77 2.13 2.01 1.10 2.57 -1.94 1.14 1.79
12 4.33 2.01 1.93 3.59 -3.97 -0.57 -1.53 2.25 2.35 2.69 -2.84 -0.20
13 -1.88 4.14 -2.89 -2.73 -0.38 1.12 3.02 2.26 4.27 -2.97 2.25 4.61
14 -5.20 -0.52 -2.56 -3.88 7.63 -0.54 6.22 -1.50 -0.82 -1.46 5.31 -1.23
15 -4.17 1.69 -2.86 -5.73 6.55 3.86 6.34 -1.85 0.31 -3.10 4.85 -0.46
16 -2.53 1.89 -1.91 -2.01 3.00 -0.61 3.60 -1.12 0.70 -1.77 3.52 -0.10
```

For printing reasons, here comes the legend

```r
> data.frame(Instrument = rownames(HedgeFund))

 Instrument
1 LongShortEquity
2 ArbitrageEventDriven
3 GlobalMacro
4 ConvertibleArbitrage
5 Distressed
6 EventDriven
7 HighYield
8 MarketNeutral
9 MergerArbitrage
10 MultipleArbitrage
11 Opportunistic
12 ShortBiased
13 MSCI.EAFE
14 NASDAQ
15 Russell2000
16 SP500
```
Now we want to calculate the basic statistics of the indices and to present them in a table. These include the mean, \texttt{mean()}, the standard deviation, \texttt{sd()}, and the minimum, \texttt{min()} and maximum, \texttt{max()}, values.

```r
> Mean = round(apply(HedgeFund, 1, mean), 2)
> Sdev = round(apply(HedgeFund, 1, sd), 2)
> Min = apply(HedgeFund, 1, min)
> Max = apply(HedgeFund, 1, max)
```

Now bind the statistics to a data frame.

```r
> Statistics <- data.frame(cbind(Mean, Sdev, Min, Max))
> Statistics
```

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Sdev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>LongShortEquity</td>
<td>0.56</td>
<td>1.57</td>
<td>-1.95</td>
<td>2.65</td>
</tr>
<tr>
<td>ArbitrageEventDriven</td>
<td>0.43</td>
<td>0.97</td>
<td>-1.55</td>
<td>1.75</td>
</tr>
<tr>
<td>GlobalMacro</td>
<td>1.13</td>
<td>1.63</td>
<td>-1.72</td>
<td>3.48</td>
</tr>
<tr>
<td>ConvertibleArbitrage</td>
<td>-0.20</td>
<td>1.28</td>
<td>-2.89</td>
<td>1.23</td>
</tr>
<tr>
<td>Distressed</td>
<td>0.76</td>
<td>0.81</td>
<td>-0.60</td>
<td>1.70</td>
</tr>
<tr>
<td>EventDriven</td>
<td>0.58</td>
<td>1.60</td>
<td>-2.62</td>
<td>2.42</td>
</tr>
<tr>
<td>HighYield</td>
<td>0.57</td>
<td>0.89</td>
<td>-0.99</td>
<td>1.73</td>
</tr>
<tr>
<td>MarketNeutral</td>
<td>0.39</td>
<td>0.35</td>
<td>-0.20</td>
<td>0.91</td>
</tr>
<tr>
<td>MergerArbitrage</td>
<td>0.39</td>
<td>0.87</td>
<td>-1.51</td>
<td>1.25</td>
</tr>
<tr>
<td>MultipleArbitrage</td>
<td>0.45</td>
<td>0.94</td>
<td>-1.38</td>
<td>2.01</td>
</tr>
<tr>
<td>Opportunistic</td>
<td>0.63</td>
<td>1.62</td>
<td>-2.04</td>
<td>2.57</td>
</tr>
<tr>
<td>ShortBiased</td>
<td>0.84</td>
<td>2.62</td>
<td>-3.97</td>
<td>4.33</td>
</tr>
<tr>
<td>MSCI.EAFE</td>
<td>0.90</td>
<td>2.95</td>
<td>-2.97</td>
<td>4.61</td>
</tr>
<tr>
<td>NASDAQ</td>
<td>0.19</td>
<td>4.04</td>
<td>-5.20</td>
<td>7.63</td>
</tr>
<tr>
<td>Russell2000</td>
<td>0.45</td>
<td>4.20</td>
<td>-5.73</td>
<td>6.55</td>
</tr>
<tr>
<td>SP500</td>
<td>0.27</td>
<td>2.26</td>
<td>-2.53</td>
<td>3.60</td>
</tr>
</tbody>
</table>
```

It is worth noting that the function \texttt{summary()} can also be convenient for calculating basic statistics of columns of a data frame.

In the base R package we also find robust measures like the trimmed mean, \texttt{median()} or \texttt{mad()}, and Huber’s estimators in the MASS package.

13.2 Distribution Functions

Most of the common probability distributions are implemented in R’s base package. Each distribution has implemented four functions:

1. the cumulative probability distribution function
2. the probability density function
3. the quantile function
4. a random sample generator
Function naming conventions

The names of these functions consist of the code for the distribution preceded by a letter indicating the desired task.

Listing 13.2: Letters preceding distribution functions and their meaning

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>for the probability distribution function</td>
</tr>
<tr>
<td>d</td>
<td>for the density function</td>
</tr>
<tr>
<td>q</td>
<td>for the quantile function</td>
</tr>
<tr>
<td>r</td>
<td>for the random number generator</td>
</tr>
</tbody>
</table>

For example, the corresponding commands for the normal distribution are:

```
dnorm(x, mean = 0, sd = 1)
pnorm(q, mean = 0, sd = 1)
qnorm(p, mean = 0, sd = 1)
rnorm(n, mean = 0, sd = 1)
```

In these expressions `mean` and `sd` are optional arguments representing the mean and standard deviation (not the variance!); `p` is the probability and `n` the number of random draws to be generated.

Distributions in R’s base environment

The next table gives an overview of the available distribution functions in R. Don’t forget to precede the code with `d`, `p`, `q` or `r` (for example `pbeta()` or `qgamma()`).

Listing 13.3: Probability distribution functions in R

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>Beta distribution</td>
</tr>
<tr>
<td>binom</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>cauchy</td>
<td>Cauchy distribution</td>
</tr>
<tr>
<td>chisq</td>
<td>Chi squared distribution</td>
</tr>
<tr>
<td>exp</td>
<td>Exponential distribution</td>
</tr>
<tr>
<td>f</td>
<td>F distribution</td>
</tr>
<tr>
<td>gamma</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>geom</td>
<td>Geometric distribution</td>
</tr>
<tr>
<td>hyper</td>
<td>Hyper geometric distribution</td>
</tr>
<tr>
<td>lnorm</td>
<td>Lognormal distribution</td>
</tr>
<tr>
<td>logis</td>
<td>Logistic distribution</td>
</tr>
<tr>
<td>nbinom</td>
<td>Negative binomial distribution</td>
</tr>
<tr>
<td>norm</td>
<td>Normal (Gaussian) distribution</td>
</tr>
<tr>
<td>pois</td>
<td>Poisson distribution</td>
</tr>
</tbody>
</table>
Example: The distribution of NYSE composite Index returns

In this example we want to express the NYSE Composite Index returns by a normal distribution function and compare the curve with the empirical histogram.

```r
> NYSE = diff(log(nyse[, 2]))
> hist(NYSE, probability = TRUE, breaks = "FD", col = "steelblue",
     xlim = c(-0.05, 0.05))
> x = seq(-0.05, 0.05, length = 251)
> lines(x, dnorm(x, mean(NYSE), sd(NYSE)), col = "orange")
```

We observe essential differences between the empirical and fitted data. The empirical data ar much more peaked and have heavier tails. This is a stylized fact known as leptokurtic behavior of financial returns.

Random Numbers

Random number generation

The following code generates 1000 random numbers from the standard normal distribution with 5% contamination, using the `ifelse()` function.

```r
> x <- rnorm(n = 1000)
> cont <- rnorm(n = 1000, mean = 0, sd = 10)
> p <- runif(n = 1000)
> z <- ifelse(p < 0.95, x, cont)
```

Sampling random numbers

The function `sample` randomly samples from a given vector. By default it samples without replacement and by default the sample size is equal to the length of the input vector. Consequently, the following statement will produce a random permutation of the elements 1 to 50:

```r
> x <- 1:50
> y <- sample(x)
> y
[1]  50  41  30  25  29  27  18  20  22  33  14  28  17  10  19  31  13  42  45
[20]  37  34  36  40  39  21  11  26  43  16  12  23  44  15  02  08  04  09  06
[30]  07  03  01  05  00

To randomly sample three elements from x use

```r
> sample(x, 3)
```
To sample three elements from \( x \) with replacement use

```r
> sample(x, 3, rep = TRUE)
[1] 23 5 24
```

### Random number seeds

There are a couple of algorithms implemented in R to generate random numbers, look at the help of the function `set.seed`, `?set.seed` to see an overview. The algorithms need initial values to generate random numbers the so-called seed of a random number generator. These initial numbers are stored in the S vector `.Random.seed()`. Every time random numbers are generated, the vector `.Random.seed` is modified, which means that the next random numbers differ from the previous ones. If you need to reproduce your numbers, you need to manually set the seed with the `set.seed()` function.

```r
> set.seed(12)
> rnorm(5)
[1] -1.48057 1.57717 -0.95674 -0.92001 -1.99764
> rnorm(5)
[1] -0.27230 -0.31535 -0.62826 -0.10646 0.42801
> set.seed(12)
> rnorm(5)
[1] -1.48057 1.57717 -0.95674 -0.92001 -1.99764
```

### 13.4 Hypothesis Testing

Hypothesis testing is a method of making statistical decisions from empirical data. Statistically significant results are unlikely to occur by chance. R comes with several statistical functions for hypothesis testing. These include

#### Listing 13.4: Some functions for Hypothesis Testing

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ks.test</code></td>
<td>Kolmogorov-Smirnov goodness of fit test</td>
</tr>
<tr>
<td><code>t.test</code></td>
<td>One or two sample Student’s t-test</td>
</tr>
<tr>
<td><code>chisq.test</code></td>
<td>chi squared goodness of fit test</td>
</tr>
<tr>
<td><code>var.test</code></td>
<td>test on variance equality of ( x ) and ( y )</td>
</tr>
</tbody>
</table>
13.4. Hypothesis Testing

**Distribution tests**

To test if a data vector is drawn from a certain distribution the function `ks.test()` can be used. In the function

```r
> args(ks.test)
function (x, y, ..., alternative = c("two.sided", "less", "greater"),
 exact = NULL)
NULL
```

the first argument `x` describes a numeric vector of data values. The second argument `y` holds either a numeric vector of data values, or a character string naming a cumulative distribution function or an actual cumulative distribution function such as "pnorm". If `y` is numeric, a two-sample test of the null hypothesis that `x` and `y` were drawn from the same continuous distribution is performed. Alternatively, when `y` is a character string naming a continuous cumulative distribution function, then a one-sample test is carried out of the null that the distribution function which generated `x` is distribution `y` with parameters specified by the `...` argument. Now let us show an example for this case

```r
> x <- runif(100)
> test = ks.test(x, "pnorm")
> test
One-sample Kolmogorov-Smirnov test

 data: x
 D = 0.5183, p-value < 2.2e-16
 alternative hypothesis: two-sided
```

Compare with

```r
> x <- rnorm(100)
> test = ks.test(x, "pnorm")
> test
One-sample Kolmogorov-Smirnov test

 data: x
 D = 0.0613, p-value = 0.8469
 alternative hypothesis: two-sided
```

In the first example the very small p-value says us that the hypothesis that `x` is drawn from a normal distribution is rejected, and in the second example the hypothesis is accepted.

The output object `out` is an object of class 'htest'. It is a list with five components.

```r
> names(test)
[1] "statistic" "p.value" "alternative" "method" "data.name"
> test$statistic
```

```r
[1] 0.5183
```
Now let us use the function to test if two data vectors are drawn from the same distribution.

```r
> x1 = rnorm(100)
> x2 = rnorm(100)
> ks.test(x1, x2)
Two-sample Kolmogorov-Smirnov test

data: x1 and x2
D = 0.08, p-value = 0.9062
alternative hypothesis: two-sided
```

and

```r
> x1 = rnorm(100)
> x2 = runif(100)
> ks.test(x1, x2)
Two-sample Kolmogorov-Smirnov test

data: x1 and x2
D = 0.5, p-value = 2.778e-11
alternative hypothesis: two-sided
```

Alternative functions that can be used are chisq.test(), shapiro.test() and wilcox.test().

### 13.5 Parameter Estimation

**How to fit the parameters of a distribution**

The recommende package MASS has a function to fit the parameters of a distribution function. MASS is part of the base environment of R.

```r
> require(MASS)
```

If we assume that random variates are drawn from a Weibull distribution with given shape and scale parameters, we proceed in the follow way to estimate these parameters

```r
> x <- rweibull(100, shape = 4, scale = 100)
> fitdistr(x, "weibull")

 shape scale
 4.20913 100.44812
```

( 0.32201) ( 2.51407)
13.6 Distribution tails and quantiles

The `quantile()` function needs two vectors as input. The first one contains the observations, the second one contains the probabilities corresponding to the quantiles. The function returns the empirical quantiles of the first data vector. To calculate the 5 and 10 percent quantile of a sample from a $\mathcal{N}(0,1)$ distribution, proceed as follows:

```r
> x <- rnorm(100)
> q <- quantile(x, c(0.05, 0.1))
> q
 5% 10%
-1.4982 -1.2373
```

The function returns a vector with the quantiles as named elements.
CHAPTER 14

LINEAR TIME SERIES ANALYSIS

R’s base and stats packages have a broad spectrum of functions implemented which are useful in time series modelling, forecasting as well as for a diagnostic analysis of the fitted models. We will select some of these functions and show how to use them for fitting the parameters of linear time series models.

14.1 OVERVIEW OF FUNCTIONS FOR TIME SERIES ANALYSIS

The following listing gives a selective overview of functions from R’s base and stats package which are useful for time series analysis.

<table>
<thead>
<tr>
<th>Listing 14.1: R Functions for ARMA Time Series Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function:</td>
</tr>
<tr>
<td>ar</td>
</tr>
<tr>
<td>ar.ols</td>
</tr>
<tr>
<td>filter</td>
</tr>
<tr>
<td>predict</td>
</tr>
<tr>
<td>arima</td>
</tr>
<tr>
<td>arima.sim</td>
</tr>
<tr>
<td>predict</td>
</tr>
<tr>
<td>tsdiag</td>
</tr>
<tr>
<td>acf</td>
</tr>
<tr>
<td>pacf</td>
</tr>
<tr>
<td>Box.test</td>
</tr>
</tbody>
</table>

This group of functions includes functions with several methods for the parameter estimation of autoregressive models, ar(), as well as for their extension with moving average terms, arima() setting the order=c(m,0,n), and for the case of integrated models, arima(). The functions ar() and arima() return the fitted model parameters, called coefficients, and the estimated value of its sigma squared a measure for the quality of the
fitted model. In the case of the \texttt{arima()} function also the value of the 
log-likelihood estimator, and the AIC criterion are printed. 
There are also functions for forecasting, \texttt{predict()}, from an estimated 
model. \texttt{predict()} is a generic function for predictions from the results of 
various model fitting functions. The function invokes particular methods 
which depend on the class of the first argument. For example the \texttt{ar()} 
returns an object of class "ar", and the function \texttt{arima()} of class "Arima". 
A call to the function \texttt{predict()} thus executes the generic functions \texttt{pre-
dict.ar()} and \texttt{predict.Arima()}, respectively.

For a diagnostic analysis of the fitted models we can perform hypothesis 
tests on the fitted residuals and them also in diagnostic plots. The diagnost-
ic plot created by the function \texttt{tsdiag()} shows three graphs the standard-
ized residuals, the autocorrelation function, ACF, of the residuals, and the 
p-Values for the Ljung-Box Statistics. The results returned by the function 
\texttt{tsdiag()} were created from the functions \texttt{acf()} and \texttt{Box.test()}. 

14.2 Simulation from an Autoregressive Process 

The coefficients for an autoregressive process are defined through the 
equation

\[ x_t - \mu = a_1(x_{t-1} - \mu) + \cdots + a_p(x_{t-p} - \mu) + \epsilon_t \]

Here, \(x_t\) are the observable data points, \(a_k\) are the coefficients of the 
generating process, and \(\epsilon_t\) are innovations from an external noise term 
which we assume to be normal distributed.

The function \texttt{filter}()

\begin{verbatim}
> args(filter)
function (x, filter, method = c("convolution", "recursive"),
    sides = 2, circular = FALSE, init = NULL)
NULL
\end{verbatim}

applies linear filtering, for both autoregressive, AR, and moving average, 
MA, processes, to a univariate time series or to each series separately of 
a multivariate time series. Here we will use this function to generate an AR 
time series process.

\textbf{Listing 14.2: Arguments of the function filter()}. For a full and detailed description we 
refer to the AR help page.

\begin{verbatim}
Argument:
x univariate or multivariate time series
filter vector of filter coefficients in reverse time order
method "convolution" applies MA, "recursive" AR filtering
sides decides on the use of 1 or 2 sided convolution filters
circular decides to wrap a convolution filter around the ends
init specifies the initial values for a recursive filter
\end{verbatim}
In the help page we find the definitions for the convolution and recursive filters. Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

\[ y[i] = x[i] + f[1] \ast y[i-1] + \ldots + f[p] \ast y[i-p] \]

No check is made from the choice of your parameters to see if recursive filter is invertible or not: the output may diverge if it is not.

The convolution filter is defined as

\[ y[i] = f[1] \ast x[i+o] + \ldots + f[p] \ast x[i+o-(p-1)] \]

where \( o \) is the offset which is determined from the \( \text{side} \) arguments.

If we want to simulate from an AR(2) process we have to set the argument \( \text{method} = \text{"recursive"}, \) the coefficients for example to \( \text{filter} = c(-0.5,0.25) \), and the starting values to \( \text{init} = c(0,0) \).

```r
> set.seed(4711)
> eps = rnorm(100)
> filter(x = eps, filter = c(-0.5, 0.25), method = "r", init = c(0, 0))

Time Series:
Start = 1
End = 100
Frequency = 1
[1] 1.819735 0.460572 1.420966 -1.082219 0.245372 -1.882153 1.819969
[8] -2.345191 1.583065 -0.903476 -0.134662 -1.730648 0.866990 -0.443008
[15] 0.640480 1.145215 -0.881530 1.066494 -1.308333 1.962546 -0.598789
[22] 0.868480 0.392143 -0.241038 -1.151741 0.711856 -1.856219 0.947218
[29] -1.605967 1.922391 -1.144393 2.818342 -0.552850 0.389813 -0.950950
[36] -0.188089 -0.431225 -2.390784 -0.752176 1.450996 -2.186195 1.457216
[43] -1.560742 -0.830652 0.640795 0.214630 0.287064 1.859636 -0.038196
[50] -1.236918 0.278421 0.949018 -0.447051 -1.259823 -0.022581 -1.209217
[57] 0.281930 -2.444528 2.019774 -0.680794 1.354014 -0.054551 0.508934
[64] -0.299013 0.222811 -1.116635 -0.008365 -1.055445 1.491222 -1.011139
[71] 0.650895 -0.384876 1.118933 -0.489480 0.600674 0.679393 0.223238
[78] 2.451229 0.756272 0.224620 -0.153271 -0.223091 0.631278 0.714437
[85] 0.277104 -2.066861 1.396770 -0.944298 1.364612 -2.018208 -0.214554
[92] -0.596543 0.724706 -0.331283 1.125702 -1.506480 0.500603 -0.048720
[99] 2.192371 -1.973837
```

We have fixed the seed, so that you will get the same innovations as those used in this course. For comparison let us compute the series step by step recursively

```r
> f = c(-0.5, 0.25)
> x = eps
> x[1] = eps[1]
> for (i in 3:100) {
> for (k in 1:2) {
> x[i] <- x[i] + f[k] * x[i - k]
> }
> }
```
After having defined the filter coefficients and the innovations \( \epsilon_p \), we looped in time (3:100) and order (1:2) over the series to create the observations. The last line converts the numeric vector \( x \) into a time series object of class \( \text{ts} \). Let us plot a longer series with 500 points and its cumulated series.

```r
> plot(ar.ts, type = "l")
> abline(h = 0, col = "grey", lty = 3)

> ari.ts = ts(cumsum(ar.ts))
> plot(ari.ts, type = "l")
> grid(col = "grey")
```

The function \( \text{acf}() \) measures the cross-correlation of a time series with itself. Therefore the function gets the name autocorrelation function or short ACF(k) for a given lag \( k \). The ACF searches for repeating patterns in a time series. In our AR(3) example we should observe that heighboured values are negatively correlated and leading to an oscillating decay of the ACF.

```r
> acf(ar.ts, xlim = c(0, 10))
```

If the coefficient in our AR(2) example would not have been negative, we would not have expected the oscillating decay.

```r
> f <- c(0.5, 0.25)
> ar2.ts <- filter(x = eps, filter = f, method = "r", init = c(0, 0))
> acf(ar2.ts, xlim = c(0, 10))
```
14.2. Simulation from an Autoregressive Process

The partial autocorrelation function `pacf()` of lag `k`, PACF(k), is the ACF between \( x_t \) and \( x_{t+k} \) with the linear dependence of \( x_{t+1} \) through to \( x_{t+k-1} \) removed. For the first moment this construction sounds unmotivated, but if we consider an AR(p) process in detail then lags greater than then the order \( p \) vanish. Thus PACFs are useful in identifying the order of an AR model.

```r
> pacf(ar.ts, xlim = c(1, 10))
> abline(v = 2.5, col = "red", lty = 3)
> pacf(ar2.ts, xlim = c(1, 10))
> abline(v = 2.5, col = "red", lty = 3)
```

The figure confirms a maximum order of 2 for the the simulated AR(2) models.
The function `ar()` fits an autoregressive time series model to empirical data by ordinary least squares, by default selecting the complexity by the Akaike Information Criterion Statistics, AIC. AIC, beside other ICs, measures the goodness of the fit of an estimated statistical model. The criterion is based on the concept of entropy offering a relative measure of the information lost when a given model is used to describe reality. In this sense the measure describes the tradeoff between the bias and variance in model construction looking for models with low complexity but high precision. A model with a lower AIC has a higher preference compared to a model with a larger AIC value.

The estimation of the AR model parameters is done by the R function `ar()`
> args(ar)
function (x, aic = TRUE, order.max = NULL, method = c("yule-walker",
"burg", "ols", "mle", "yw"), na.action = na.fail, series = deparse(substitute(x)),
...) NULL

Listing 14.3: Arguments of the function ar(). For a full and detailed description we refer to the AR help page

Argument:
x a univariate or multivariate time series
aic if TRUE then AIC otherwise order.max is fitted
order.max maximum order of model to fit
method giving the method used to fit the model
na.action function to be called to handle missing values
series names for the series
... additional arguments for specific methods
demean should a mean be estimated during fitting, passed to the underlying methods

Several methods for the parameter estimation are provided by R. Here we concentrate on the methods method="mle", which performs a maximum log-likelihood estimation, and the method="ols" which does an ordinary least square estimation.

For both variants order selection for the parameter p is done by AIC if aic=TRUE. This is problematic for the OLS method since the AIC is computed as if the variance estimate were the MLE.

The provided implementation of ar() includes by default a constant in the model, by removing the overall mean of x before fitting the AR model, or estimating (MLE) a constant to subtract.

Example U.S. GNP data

As an example let us fit the parameters of the quarterly growth rates of the U.S. real gross national product, GNP, seasonally adjusted. The data can be obtained from the FRED2 data base:

> name = "GNP"
> URL = paste("http://research.stlouisfed.org/fred2/series/", name,
"/", "downloaddata/", name, ".csv", sep = ")
> download = read.csv(URL)
> head(download)

<table>
<thead>
<tr>
<th>DATE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1947-01-01</td>
<td>238.1</td>
</tr>
<tr>
<td>2 1947-04-01</td>
<td>241.5</td>
</tr>
<tr>
<td>3 1947-07-01</td>
<td>245.6</td>
</tr>
<tr>
<td>4 1947-10-01</td>
<td>255.6</td>
</tr>
<tr>
<td>5 1948-01-01</td>
<td>261.7</td>
</tr>
<tr>
<td>6 1948-04-01</td>
<td>268.7</td>
</tr>
</tbody>
</table>
We transform the data from the download into a time series object. Taking only data points before 2008 we exclude the data points from the recent subprime crisis. We also measure the GNP in units of 1000.

\[
> \text{GNP} = \text{ts(download[1:52, 2]/1000, start = c(1995, 1), freq = 4)}
\]
\[
> \text{GNP.RATE} = 100 * \text{diff(log(GNP))}
\]

Before we start to model the GNP, let us have a look at the GNP time series and its growth rate.

\[
> \text{plot(GNP, type = "l")}
\]
\[
> \text{plot(GNP.RATE, type = "h")}
\]
\[
> \text{abline(h = 0, col = "darkgray")}
\]

*AR parameter estimation:* We get the following parameter estimates for the fitted parameters from the ordinary least square, OLS, estimator
> gnpFit = ar(GNP.RATE, method = "ols")
> gnpFit

Call:
ar(x = GNP.RATE, method = "ols")

Coefficients:
     1      2      3      4      5      6      7      8      9     10
   0.442  -0.021  -0.159  -0.124  -0.128   0.186  -0.090  -0.058  0.215  -0.194
     11     12     13     14     15     16     17
 -0.121  -0.008   0.014   0.093 -0.231   0.076   0.160

Intercept: -0.214 (0.145)

Order selected 17 sigma^2 estimated as 0.65

The result of the estimation tells us that the best fit was achieved by an AR(2) model. There is more information available as provided by the printing.

> class(gnpFit)
[1] "ar"

> names(gnpFit)
[1] "order"  "ar"    "var.pred"  "x.mean"  "x.intercept"
[6] "aic"    "n.used" "order.max" "partialacf" "resid"
[11] "method" "series" "frequency" "call"    "asy.se.coef"

The returned object of the function ar() is a list with the following entries.

Listing 14.4: Values of the function ar(). For a full and detailed description we refer to the ar help page.

<table>
<thead>
<tr>
<th>Values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>order</td>
</tr>
<tr>
<td>ar</td>
</tr>
<tr>
<td>var.pred</td>
</tr>
<tr>
<td>x.mean</td>
</tr>
<tr>
<td>x.intercept</td>
</tr>
<tr>
<td>aic</td>
</tr>
<tr>
<td>n.used</td>
</tr>
<tr>
<td>order.max</td>
</tr>
<tr>
<td>partialacf</td>
</tr>
<tr>
<td>resid</td>
</tr>
<tr>
<td>method</td>
</tr>
<tr>
<td>series</td>
</tr>
<tr>
<td>frequency</td>
</tr>
<tr>
<td>call</td>
</tr>
<tr>
<td>asy.var.coef</td>
</tr>
</tbody>
</table>

Order selection: The best order selection by AIC suggested \( p = 2 \). This can be confirmed by a view of the partial autocorrelation function, which dies out after two lags. Have a look at the plot.
> pacf(GNP.RATE)

14.4 Autoregressive Moving Average Modelling

Autoregressive moving average modelling, ARMA, adds a moving average part, MA, to the pure autoregressive process, therefore the name ARMA. Allowing to difference (integrate) the models, we get the so called integrate ARMA, or short ARIMA, models.

In the literature different definitions of ARMA models have different signs for the AR and/or MA coefficients. The definition used by R is\(^1\)

\[
x_t = a_1 x_{t-1} + \cdots + a_p x_{t-p} + \varepsilon_t + b_1 \varepsilon_{t-1} + \cdots + b_q \varepsilon_{t-q}
\]

The function \texttt{arima()} from R’s stats package allows you to analyze these kinds of linear time series models.

> \texttt{args(arima)}

    function (x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA), xreg = NULL, include.mean = TRUE, transform.pars = TRUE, fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond, optim.method = "BFGS", optim.control = list(), kappa = 1e+06)

NULL

LISTING 14.5: Arguments of the function \texttt{arima}. For a full and detailed description we refer to the \texttt{arima} help page.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a univariate time series</td>
</tr>
<tr>
<td>order</td>
<td>order of the non-seasonal part of the ARIMA model</td>
</tr>
<tr>
<td>seasonal</td>
<td>specifies the seasonal part of the ARIMA model</td>
</tr>
<tr>
<td>xreg</td>
<td>a vector or matrix of optional external regressors</td>
</tr>
<tr>
<td>include.mean</td>
<td>should the ARIMA model include a mean/intercept term</td>
</tr>
<tr>
<td>transform.pars</td>
<td>transforms AR parameters to ensure stationarity</td>
</tr>
<tr>
<td>fixed</td>
<td>allows to fix coefficients</td>
</tr>
<tr>
<td>init</td>
<td>optional numeric vector of initial parameter values</td>
</tr>
<tr>
<td>method</td>
<td>determines the fitting method</td>
</tr>
<tr>
<td>n.cond</td>
<td>for CSS method number of initial observations to ignore</td>
</tr>
<tr>
<td>optim.control</td>
<td>List of control parameters for function \texttt{optim()}</td>
</tr>
<tr>
<td>kappa</td>
<td>prior variance for past observations in differenced models</td>
</tr>
</tbody>
</table>

\textit{ARIMA parameter estimation}

Fitting the GNP growth rate with an ARMA(2,1) model, we get

\(^1\)and therefore the MA coefficients differ in sign from those of S-PLUS.
14.4. Autoregressive Moving Average Modelling

> gnpFit = arima(GNP.RATE, order = c(2, 0, 1))
> gnpFit
Call:
  arima(x = GNP.RATE, order = c(2, 0, 1))
Coefficients:
    ar1    ar2   ma1  intercept
  -0.144  0.477  0.662    1.484
  s.e.  0.271  0.167  0.269    0.449

sigma^2 estimated as 1.75:  log likelihood = -86.93,  aic = 183.85

Diagnostic analysis

To get a better idea on the quality of the fitted model parameters we can investigate the residuals of the fitted model using the function tsdiag().

> tsdiag(gnpFit)

Listing 14.6: Arguments of the function tsdiag. For a full and detailed description we refer to the tsdiag help page.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>a fitted time-series model</td>
</tr>
<tr>
<td>gof.lag</td>
<td>maximum lags for a Portmanteau goodness-of-fit test</td>
</tr>
<tr>
<td>...</td>
<td>further arguments to be passed to particular methods</td>
</tr>
</tbody>
</table>

The residuals from a fitted model can be extracted using the generic function residuals(). The abbreviated form resid() is an alias for residuals().

> args(residuals)
  function (object, ...)
  NULL

Listing 14.7: Arguments of the function residuals. For a full and detailed description we refer to the tsdiag help page.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>a fitted object from which to extraction model</td>
</tr>
<tr>
<td>residuals</td>
<td>... other arguments to be passed</td>
</tr>
</tbody>
</table>

> gnpResid <- residuals(gnpFit)
> gnpResid

<table>
<thead>
<tr>
<th></th>
<th>Qtr1</th>
<th>Qtr2</th>
<th>Qtr3</th>
<th>Qtr4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>-0.054242</td>
<td>0.234237</td>
<td>2.402407</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>-0.442305</td>
<td>0.377841</td>
<td>0.441628</td>
<td>-1.720508</td>
</tr>
</tbody>
</table>
FIGURE 14.4: Quarterly GNP time series diagnostics.

1997 -2.875129 -1.000601 0.913589 -1.819013
1998 3.547771 1.004371 3.060105 -0.058494
1999 1.549204 -0.686327 -0.450260 -0.215312
2000 -0.751778 -0.713571 0.865501 2.044735
2001 -0.824612 -0.872334 -1.446071 -1.903232
2002 0.077242 -0.196654 0.495404 1.086237
2003 1.336968 -0.477844 0.097598 -0.173489
2004 -1.029039 0.397257 -0.185773 0.555974
2005 0.492367 -1.440910 0.540241 -2.555669
2006 -1.805101 1.439335 1.861324 0.535498
2007 -0.203375 0.708847 -1.909115 -0.109896

> par(mfrow = c(2, 2))
> hist(gnpResid, probability = TRUE, breaks = "FD", xlim = c(-1.5, 1.5), col = "steelblue", border = "white")
> x = seq(-2, 2, length = 100)
Finally we will close this short investigation by forecasting the growth rates 1 year or four quarters ahead

```r
> predict(gnpFit, n.ahead = 4)
$pred
 Qtr1 Qtr2 Qtr3 Qtr4
2008 0.89314 1.25120 1.23603 1.40896
```
\[ \text{se} \]
<table>
<thead>
<tr>
<th></th>
<th>Qtr1</th>
<th>Qtr2</th>
<th>Qtr3</th>
<th>Qtr4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1.3246</td>
<td>1.4918</td>
<td>1.5841</td>
<td>1.6038</td>
</tr>
</tbody>
</table>
CHAPTER 15

REGRESSION MODELING

In statistics, regression analysis refers to techniques for modelling and analyzing several variables, when the focus is on the relationship between a dependent variable (response) and one or more independent variables. Regression analysis can thus be used for prediction including forecasting of time-series data. Furthermore, regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. A large body of techniques for carrying out regression analysis has been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the data. In this and the following chapters we will show how to use basic regression modeling for financial applications.

15.1 LINEAR REGRESSION MODELS

R can fit linear regression models of the form

\[ y = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p + \epsilon \]

where \( \beta = (\beta_0, \cdots, \beta_p) \) are the intercept and \( p \) regression coefficients and \( x_1, \cdots, x_p \) the \( p \) regression variables. The error term \( \epsilon \) has mean zero and is often modelled as a normal distribution with some variance.

The function \( \text{lm()} \) and its arguments

In base R the function \( \text{lm()} \) is used to fit linear models and to carry out regression.

\[
> \text{args(lm)}
\]
function (formula, data, subset, weights, na.action, method = "qr",
    model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
    contrasts = NULL, offset, ...)  

NULL  

The function comes with quite a few arguments which have the following meaning:

- **formula** an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

- **data** an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which lm is called.

- **subset** an optional vector specifying a subset of observations to be used in the fitting process.

- **weights** an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector. If non-NULL, weighted least squares is used with weights (that is, minimizing \( \sum (w \cdot e^2) \)); otherwise ordinary least squares is used.

- **na.action** a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset. The default is na.omit. Another possible value is NULL, no action. Value na.exclude can be useful.

- **method** the method to be used; for fitting, currently only the method = "qr" is supported; method = "model.frame" returns the model frame (the same as with model = TRUE, see below).

- **model, x, y, qr** logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the response, the QR decomposition) are returned.

- **singular.ok** logical. If FALSE (the default in S but not in R) a singular fit is an error.

- **contrasts** an optional list. See the contrasts.arg of model.matrix.default.

- **offset** this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length either one or equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if both are specified their sum is used. See model.offset.
• ... additional arguments to be passed to the low level regression fitting functions (see below).

The first argument needs some more explanation.

Formula objects - How to formulate a regression model

Formula objects play a very important role in statistical modeling in R, they are used to specify a model to be fitted. The exact meaning of a formula object depends on the modeling function. We will look at some examples in the context of linear modelling. The general form for a formula is given by:

\[
\text{response} \sim \text{expression}
\]

Sometimes the term response can be omitted. The term expression is a collection of variables combined by operators. Two typical examples of formula objects are

\[
> \text{formula} \leftarrow y \sim x1 + x2
\]

\[
> \text{formula}
\]

\[
y \sim x1 + x2
\]

\[
> \text{class(formula)}
\]

\[
[1] \text{"formula"}
\]

and a somehow more complex formula

\[
> \text{formula2} \leftarrow \log(y) \sim \log(x1) + \log(x2) + x2:x3
\]

\[
> \text{formula2}
\]

\[
\log(y) \sim \log(x1) + \log(x2) + x2:x3
\]

A description of formulating models using formulae is given in the help page of \texttt{formula()}. By default R includes the intercept of the linear regression model. To omit the intercept use the formula:

\[
> y \sim -1 + x1 + x2
\]

\[
y \sim -1 + x1 + x2
\]

R offers many additional operators to express formula relationships. Be aware of the special meaning of such operators \(+,-,\cdot,\backslash\) and : in linear model formulae. Important, they are not used for the normal multiplication, subtraction, power and division. For example the : operator is used to model interaction terms in linear models. The next formula example includes an interaction term between the variable \(x_1\) and the variable \(x_2\)

\[
> y \sim x1 + x2 + x1:x2
\]
y ~ x1 + x2 + x1:x2

which corresponds to the linear regression model

\[ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon \]

Note that there is a short hand notation for the above formula which is given by

\[ y \sim x1 \times x2 \]

In general, \( x_1 x_2 \ldots x_p \) is a short hand notation for the model that includes all single terms, order 2 interactions, order 3 interactions, ..., order \( p \) interactions. To see all the terms that are generated use the `terms` function.

```r
> formula <- y ~ x1 + x2
> terms(formula)

y ~ x1 + x2
attr(, "variables")
list(y, x1, x2)
attr(, "factors")
 x1 x2 x1:x2
 y 0 0 0
 x1 1 0 1
 x2 0 1 1
attr(, "term.labels")
[1] "x1" "x2" "x1:x2"
attr(, "order")
[1] 1 1 2
attr(, "intercept")
[1] 0
attr(, "response")
[1] 0
attr(, "Environment")
<environment: R_GlobalEnv>
```

The `^` operator is used to generate interaction terms up to a certain order. For example the formula expression

\[ y \sim x1 + x2 + +x3 + x1:x2 + x2:x3 + x1:x3 \]

is also equivalent to

\[ y \sim (x1 + x2 + x3)^2 \]

The `-` operator is used to leave out terms in a formula. We have already seen that -1 removes the intercept in a regression formula. For example, to leave out a specific interaction term in the above model use:
> y ~ (x1 + x2 + x3)^2 - x2:x3
y ~ (x1 + x2 + x3)^2 - x2:x3

which is equivalent to

> y ~ x1 + x2 + x3 + x1:x2 + x1:x3
y ~ x1 + x2 + x3 + x1:x2 + x1:x3

The function \( I \) is used to suppress the specific meaning of the operators in a linear regression model. For example, if you want to include a transformed \( x2 \) variable in your model, say multiplied by 2, the following formula will not work:

> y ~ x1 + 2 * x2
y ~ x1 + 2 * x2

The * operator already has a specific meaning, so you should use the following construction:

> y ~ x1 + I(2 * x2)
y ~ x1 + I(2 * x2)

You should also use the \( I \) function when you want to include a centered regression variable in your model. The following formula will work, however, it does not return the expected result.

> y ~ x1 + (x2 - constant)
y ~ x1 + (x2 - constant)

Use the following formula instead:

> y ~ x1 + I(x2 - constant)
y ~ x1 + I(x2 - constant)

15.2 Parameter Estimation

Now we are ready to formulate linear regression models. Let us start with a very simple model the Capital Asset Pricing Model, CAPM, in portfolio optimization.

*The Capital Asset Pricing Model*

The CAPM model says that the return to investors has to be equal to the risk-free rate plus a premium for stocks as a whole that is higher than the risk-free rate. This can be expressed as a linear model

\[
R_c = r_f + \beta(r_M - r_f)
\]
where, $R_c$ is the company’s expected return on capital, $r_f$ is the risk-free return rate, usually a long-term U.S. Treasury bill rate, and $r_M$ is the expected return on the entire market of all investments. $\beta$ is called the company’s beta.

Most measures for $\beta$ use a common broad stock market index over the past 5 or 10 years.

**What is Beta?:** Relying on the assumption that markets are efficient, we see investors vote every day on whether the stock market will rise or fall. Watching a long series of measures we should be able to see a relationship between a change in stock prices and the market.

**Example: Betas for the Dow Jones equities**

In this example we want to compute the betas for the equities of the Dow Jones Index. As the market reference we use the SP500 Index, and for the risk free rate the 3 months T-Bills.

Loading the DJ example file

The data set comes with the example data files in the R package for this book.

```r
> data(DowJones)
> DJ = as.timeSeries(DowJones)
> dim(DJ)
[1] 2529 30
> range(DJ)
[1] 1.18 137.04
> names(DJ)
[1] "AA" "AXP" "T" "BA" "CAT" "C" "KO" "DD" "EK" "XOM"
[11] "GE" "GM" "HWP" "HD" "HON" "INTC" "IBM" "IP" "JPM" "JNJ"
[21] "MCD" "MRK" "MSFT" "MMM" "MO" "PG" "SBC" "UTX" "WMT" "DIS"
```

```r
> DJ30 = alignDailySeries(DJ)
> dim(DJ30)
[1] 2612 30
```

**Downloading from Yahoo the market index**

In the next step we want to download from Yahoo Finance the market index of the SP500 as a representant of a broad market index. But first we write a small function named `getYahoo()` to download the series from the Internet and to transform it into an object of class `timeSeries`.

```r
> getYahoo <- function(Symbol, start = c(y = 1990, m = 1, d = 1)) {
 stopifnot(length(Symbol) == 1)
 URL <- paste("http://chart.yahoo.com/table.csv?", "s=", Symbol,
 "&a=", start[2] - 1, "&b=", start[3], "&c=", start[1],
 "&d=", 11, "&e=", 31, "&f=", 2099, "&g=d&q=q&y=0", "&z=",
 Symbol, ",x=.csv", sep = "")
  ```
Now we are ready for the download. After the download we cut the SP500 series to the same length as series of the DJ30 equities, select the "Open" column and rename it to "SP500"

```r
> SP500 <- getYahoo("^GSPC")
> SP500 <- window(SP500, start(DJ), end(DJ30))
> SP500 <- SP500[, "^GSPC.Close"]
> names(SP500) <- "SP500"
> head(SP500, 10)
GMT
1990-12-31 330.22
1991-01-02 326.45
1991-01-03 321.91
1991-01-04 321.00
1991-01-07 315.44
1991-01-08 314.90
1991-01-09 311.49
1991-01-10 314.53
1991-01-11 315.23
1991-01-14 312.49
```

Finally we align the SP500 to weekdays.

```r
> SP500 <- alignDailySeries(SP500)
> dim(SP500)
[1] 2612 1
```

Downloading from Fred the risk free market rate
We proceed in the same way as we downloaded the SP500. The T-Bill series can be downloaded from the Fed's data base server FRED in St. Louis. The symbol name is "DTB3" and the URL is composed in the function `getFRed()`.

```r
> getFRed <- function(Symbol) {
 stopifnot(length(Symbol) == 1)
 URL <- paste("http://research.stlouisfed.org/fred2/series/", Symbol, "/downloaddata/", Symbol, ".csv", sep = "")
 x = read.csv(URL)
 X = timeSeries(data = as.numeric(data.matrix(x[, 2])), charvec = as.character(x[, 1]), units = paste(Symbol, names(x)[-1], sep = "."))
 rev(X)
}
```
Download the data and prepare them to be merged with the SP500 and DJ30 time series.

```r
> DTB3 = getFred("DTB3")
> DTB3 = window(DTB3, start(DJ), end(DJ30))
> head(DTB3, 10)
GMT DTB3
1990-12-31 6.44
1991-01-02 6.46
1991-01-03 6.44
1991-01-04 6.53
1991-01-07 6.51
1991-01-08 6.44
1991-01-09 6.25
1991-01-10 6.21
1991-01-11 6.16
1991-01-14 6.05

> DTB3 = alignDailySeries(DTB3)
> dim(DTB3)
[1] 2612 1
```

Compute the Betas

Compose the series of SP500, DTB3, and DJ30, take care of the proper annualized returns ...

...

15.3 Model Diagnostics

The object recession.lm object can be used for further analysis. For example, model diagnostics:

- Are residuals normally distributed?
- Are the relations between response and regression variables linear?
- Are there outliers?

Use the Kolmogorov-Smirnov test to check if the model residuals are normally distributed. Proceed as follows:

```r
> cars2.lm <- lm(Weight ~ Mileage, data = cars2)
> cars2.residuals <- resid(cars2.lm)
> ks.test(cars2.residuals, "pnorm", mean = mean(cars2.residuals),
 sd = sd(cars2.residuals))
```
15.3. MODEL DIAGNOSTICS

**Histogram of cars2.residuals**

![Histogram of cars2.residuals](image)

**Normal Q–Q Plot**

![Normal Q–Q Plot](image)

**FIGURE 15.1**: A histogram and a qq-plot of the model residuals to check normality of the residuals.

**One-sample Kolmogorov-Smirnov test**

```
data: cars2.residuals
D = 0.0564, p-value = 0.9854
alternative hypothesis: two-sided
```

Or draw a histogram or qqplot to get a feeling for the distribution of the residuals

```
> par(mfrow = c(1, 2))
> hist(cars2.residuals)
> qqnorm(cars2.residuals)
```

A plot of the residuals against the fitted value can detect if the linear relation between the response and the regression variables is sufficient.
A Cooke’s distance plot can detect outlying values in your data set. R can construct both plots from the `cars.lm` object.

```r
> par(mfrow = c(1, 2))
> plot(cars2.lm, which = 1)
> plot(cars2.lm, which = 4)
```

15.4 Updating a linear model

Some useful functions to update (or change) linear models are given by: `add1()`. This function is used to see what, in terms of sums of squares and residual sums of squares, the result is of adding extra terms (variables) to the model. The `cars` data set also has a `Disp.` variable representing the engine displacement.
15.4. Updating a linear model

```r
> add1(cars2.lm, Weight ~ Mileage + Disp.)

Single term additions

Model: Weight ~ Mileage
Df Sum of Sq RSS AIC
<none> 4078578 672
Disp. 1 1297541 2781037 651

drop1(): This function is used to see what the result is, in terms of sums of squares and residual sums of squares, of dropping a term (variable) from the model.

```r
> drop1(cars2.lm, ~Mileage)

Single term deletions

Model: Weight ~ Mileage
Df Sum of Sq RSS AIC
<none> 4078578 672
Mileage 1 10428530 14507108 746

update(): This function is used to update a model. In contrary to add1() and drop1() this function returns an object of class `lm`. The following call updates the `cars.lm` object. The `~.+Disp` construction adds the `Disp` variable to whatever model is used in generating the `cars.lm` object.

```r
> cars.lm2 <- update(cars2.lm, ~. + Disp.)
> cars.lm2

Call:
 lm(formula = Weight ~ Mileage + Disp., data = cars2)

Coefficients:
 (Intercept) Mileage Disp.
 3748.4 -58.0 3.8
```

Forecasting U.S. recession from the yield curve

US Recession Data: The Chicago Fed National Activity Index (CFNAI) is a monthly index designed to better gauge overall economic activity and inflationary pressure. The CFNAI is released at the end of each calendar month.

The CFNAI is a weighted average of 85 existing monthly indicators of national economic activity. It is constructed to have an average value of zero and a standard deviation of one. Since economic activity tends toward trend growth rate over time, a positive index reading corresponds to growth above trend and a negative index reading corresponds to growth below trend.
**Downloading the CFNAI from the Internet:** There are two possibilities to download the data from the Chicago FED Internet site: (i) to download the data as an XLS file, to convert it in a CSV File and to store it on your computer. (ii) to download the HTML file, clean it from the tags and extract the data records. As an example we follow her the second option.

```r
> URL = "http://www.chicagofed.org/webpages/research/data/cfnai/current_data.cfm"
> ans = readLines(URL)
```

Extract the data records from the HTML file and clean the data file, i.e. substitute tags and remove non-numeric lines

```r
> data <- ans[grep("<.td>$", ans)]
> data <- gsub("<td>", "", data)
> data <- gsub("<.td>", "", data)
> data <- gsub("N.A", "0", data)
> data <- gsub(":", ".", data)
> data <- data[-grep("[A-Z]", data)]
```

Then convert into a numeric matrix, keep the proper columns

```r
> data <- rev(as.numeric(data))
> data <- matrix(data, byrow = TRUE, ncol = 7)
> Data = data[,-grep("[A-Z]", data)]
```

and finally transform the matrix into an object of class `ts`.

```r
> CFNAI = ts(data = Data, start = c(1967, 3), frequency = 12)
> plot(CFNAI)
```

**US Short and Long Term Interest Rates:** In 1996 Arturo Estrella and Frederic Mishkin discuss the yield curve as a predictor of US recessions. They showed that the spread between the interest rates on the ten-year Treasury note and the three-month Treasury bill is a valuable forecasting tool and outperforms other financial and macroeconomic indicators in predicting recessions two to six quarters ahead.

First we download monthly data of the three-month Treasury bill and the ten-year Treasury note from the FRED 2 data base.

```r
> tBill = "TB3MS"
> tNote = "GS10"
> tBillURL <- paste("http://research.stlouisfed.org/fred2/series/",
 tBill, "/", "downloaddata/", tBill, ".csv", sep = "")
> tNoteURL <- paste("http://research.stlouisfed.org/fred2/series/",
 tNote, "/", "downloaddata/", tNote, ".csv", sep = "")
> tBillSeries = read.csv(tBillURL)
> tNoteSeries = read.csv(tNoteURL)
> tBillSeries = tBillSeries[-(1:grep("1964-05", tBillSeries[, 1])), 2]
> tNoteSeries = tNoteSeries[-(1:grep("1964-05", tNoteSeries[, 1])), 2]
```
Model the Data: recession short interest + long interests

As an example we will use our recession and interest rate data sets to fit the following linear regression model.

\[
\text{Recession} = \beta_0 + \beta_1 \times \text{ShortTermInterests} + \beta_1 \times \text{LongTermInterests} + \epsilon
\]

In R this model is formulated and fitted as follows ...

```r
> treasury = ts(cbind(tBillSeries, tNoteSeries, tSpread = tNoteSeries - tBillSeries), start = c(1964, 5), frequency = 12)
> plot(treasury)
```

So recession.lm contains much more information than you would see by just printing it. The next table gives an overview of some generic functions, which can be used to extract information or to create diagnostic plots from the cars.lm object.
Generic function:
- `summary(object)` returns a summary of the fitted model
- `coef(object)` extracts the estimated model parameters
- `resid(object)` extracts the model residuals of the fitted model
- `fitted(object)` returns the fitted values of the model
- `deviance(object)` returns the residual sum of squares
- `anova(object)` returns an anova table
- `predict(object)` returns predictions
- `plot(object)` creates diagnostic plots

These functions are generic. They will also work on objects returned by other statistical modelling functions. The `summary()` function is useful to get some extra information of the fitted model such as t-values, standard errors and correlations between parameters.
CHAPTER 16

DISSIMILARITIES OF DATA RECORDS

For a multivariate data set many questions in finance ask which of the variables or data records are dissimilar. Can we cluster similar data records in groups or can we find an hierarchical or other kind of structure behind the observations made.

R's graphics and stats packages include several functions which help to answer these questions if data records are similar or to what extent they differ from each other. The graphics and stats packages include functions for computing correlations, for creating star and segment plots, and for clustering data into groups.

16.1 CORRELATIONS AND PAIRWISE PLOTS

In statistics, correlation indicates the strength and direction of a linear relationship between two random variables and measures their departure from independence. In this broad sense there are several coefficients, measuring the degree of correlation, adapted to the nature of the data.

In R the function cor() computes the correlation between two vectors \( x \) and \( y \) vectors. If \( x \) and \( y \) are matrices then the correlations between the columns of \( x \) and the columns of \( y \) are computed. In the same way the function cov() measures the covariances.

For an exploratory data analysis the function pairs() creates a matrix of scatterplots.

Example: World major stock market capitalizations

In the first example we ask the question: Which world major stock markets are similar? The demo data set named Capitalization contains for the years 2003 to 2008 the stock market capitalizations for 13 stock markets.

```r
> Caps = Capitalization/1000
> rownames(Caps) = abbreviate(rownames(Caps), 6)
```
> Caps = ts(t(Caps), start = 2003, frequency = 1)

Note that we have expressed here the capitalizations as a time series object of class `ts` in units of 1000 USD and have abbreviated the corresponding stock market names for a more compact printing.

> Caps[, 1:7]

Time Series:
Start = 2003
End = 2008
Frequency = 1

<table>
<thead>
<tr>
<th></th>
<th>ErnxUS</th>
<th>TSXGrp</th>
<th>AstrSE</th>
<th>BmbySE</th>
<th>HngKSE</th>
<th>NSEInd</th>
<th>ShngSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1329.0</td>
<td>888.68</td>
<td>585.43</td>
<td>278.66</td>
<td>714.60</td>
<td>252.89</td>
<td>360.11</td>
</tr>
<tr>
<td>2004</td>
<td>12707.6</td>
<td>1177.52</td>
<td>776.40</td>
<td>386.32</td>
<td>861.46</td>
<td>363.28</td>
<td>314.31</td>
</tr>
<tr>
<td>2005</td>
<td>3632.3</td>
<td>1482.18</td>
<td>804.01</td>
<td>553.07</td>
<td>1055.00</td>
<td>515.97</td>
<td>286.19</td>
</tr>
<tr>
<td>2006</td>
<td>15421.2</td>
<td>1700.71</td>
<td>1095.86</td>
<td>818.88</td>
<td>1714.95</td>
<td>774.12</td>
<td>917.51</td>
</tr>
<tr>
<td>2007</td>
<td>15650.8</td>
<td>2186.55</td>
<td>1298.32</td>
<td>1819.10</td>
<td>2654.42</td>
<td>1660.10</td>
<td>3694.35</td>
</tr>
<tr>
<td>2008</td>
<td>9208.9</td>
<td>1033.45</td>
<td>683.87</td>
<td>647.20</td>
<td>1328.77</td>
<td>600.28</td>
<td>1425.35</td>
</tr>
</tbody>
</table>

and the remaining six series are

> Caps[, 8:13]

Time Series:
Start = 2003
End = 2008
Frequency = 1

<table>
<thead>
<tr>
<th></th>
<th>TokySE</th>
<th>BMESSE</th>
<th>DtschB</th>
<th>LndnSE</th>
<th>ErnxEU</th>
<th>SIX SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2953.1</td>
<td>726.24</td>
<td>1079.0</td>
<td>2460.1</td>
<td>2076.4</td>
<td>727.10</td>
</tr>
<tr>
<td>2004</td>
<td>3557.7</td>
<td>940.67</td>
<td>1194.5</td>
<td>2865.2</td>
<td>2441.3</td>
<td>826.04</td>
</tr>
<tr>
<td>2005</td>
<td>4572.9</td>
<td>959.91</td>
<td>1221.1</td>
<td>3058.2</td>
<td>2706.8</td>
<td>935.45</td>
</tr>
<tr>
<td>2006</td>
<td>4614.1</td>
<td>1322.91</td>
<td>1637.6</td>
<td>3794.3</td>
<td>3712.7</td>
<td>1212.31</td>
</tr>
<tr>
<td>2007</td>
<td>4330.9</td>
<td>1781.13</td>
<td>2105.2</td>
<td>3851.7</td>
<td>4222.7</td>
<td>1271.05</td>
</tr>
<tr>
<td>2008</td>
<td>3115.8</td>
<td>948.35</td>
<td>1110.6</td>
<td>1868.2</td>
<td>2101.7</td>
<td>857.31</td>
</tr>
</tbody>
</table>

To group similar stock markets we first explore the pairwise correlations between the markets

> cor(Caps)

<table>
<thead>
<tr>
<th></th>
<th>ErnxUS</th>
<th>TSXGrp</th>
<th>AstrSE</th>
<th>BmbySE</th>
<th>HngKSE</th>
<th>NSEInd</th>
<th>ShngSE</th>
<th>TokySE</th>
<th>BMESSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErnxUS</td>
<td>1.00000</td>
<td>0.66304</td>
<td>0.78653</td>
<td>0.64182</td>
<td>0.71461</td>
<td>0.65205</td>
<td>0.57585</td>
<td>0.43570</td>
<td>0.77295</td>
</tr>
<tr>
<td>TSXGrp</td>
<td>0.66304</td>
<td>1.00000</td>
<td>0.97622</td>
<td>0.89808</td>
<td>0.90019</td>
<td>0.90341</td>
<td>0.74029</td>
<td>0.81474</td>
<td>0.95437</td>
</tr>
<tr>
<td>AstrSE</td>
<td>0.78653</td>
<td>0.97622</td>
<td>1.00000</td>
<td>0.89765</td>
<td>0.92404</td>
<td>0.94355</td>
<td>0.75838</td>
<td>0.74826</td>
<td>0.97869</td>
</tr>
<tr>
<td>BmbySE</td>
<td>0.64182</td>
<td>0.89808</td>
<td>0.89765</td>
<td>1.00000</td>
<td>0.98277</td>
<td>0.99981</td>
<td>0.96031</td>
<td>0.49666</td>
<td>0.96563</td>
</tr>
<tr>
<td>HngKSE</td>
<td>0.71461</td>
<td>0.90019</td>
<td>0.92404</td>
<td>0.98277</td>
<td>1.00000</td>
<td>0.98566</td>
<td>0.93245</td>
<td>0.53386</td>
<td>0.97779</td>
</tr>
<tr>
<td>NSEInd</td>
<td>0.65205</td>
<td>0.90341</td>
<td>0.90435</td>
<td>0.99981</td>
<td>0.98566</td>
<td>1.00000</td>
<td>0.95665</td>
<td>0.50840</td>
<td>0.96965</td>
</tr>
<tr>
<td>ShngSE</td>
<td>0.57585</td>
<td>0.74029</td>
<td>0.75838</td>
<td>0.96031</td>
<td>0.93245</td>
<td>0.95665</td>
<td>1.00000</td>
<td>0.23919</td>
<td>0.87535</td>
</tr>
<tr>
<td>TokySE</td>
<td>0.43570</td>
<td>0.81474</td>
<td>0.74826</td>
<td>0.49666</td>
<td>0.53386</td>
<td>0.50840</td>
<td>0.23919</td>
<td>1.00000</td>
<td>0.62992</td>
</tr>
<tr>
<td>BMESSE</td>
<td>0.77295</td>
<td>0.95437</td>
<td>0.97869</td>
<td>0.96563</td>
<td>0.97779</td>
<td>0.96965</td>
<td>0.87535</td>
<td>0.62992</td>
<td>1.00000</td>
</tr>
<tr>
<td>DtschB</td>
<td>0.72240</td>
<td>0.95461</td>
<td>0.97865</td>
<td>0.94422</td>
<td>0.95090</td>
<td>0.94743</td>
<td>0.84299</td>
<td>0.63443</td>
<td>0.98665</td>
</tr>
<tr>
<td>LndnSE</td>
<td>0.59734</td>
<td>0.88426</td>
<td>0.88688</td>
<td>0.64225</td>
<td>0.66316</td>
<td>0.65065</td>
<td>0.42743</td>
<td>0.84522</td>
<td>0.78587</td>
</tr>
<tr>
<td>ErnxEU</td>
<td>0.72434</td>
<td>0.97201</td>
<td>0.99052</td>
<td>0.86439</td>
<td>0.89426</td>
<td>0.87125</td>
<td>0.70899</td>
<td>0.77771</td>
<td>0.95382</td>
</tr>
<tr>
<td>SIX SE</td>
<td>0.75370</td>
<td>0.94971</td>
<td>0.97466</td>
<td>0.85312</td>
<td>0.91121</td>
<td>0.86243</td>
<td>0.70311</td>
<td>0.78990</td>
<td>0.94329</td>
</tr>
<tr>
<td>DtschB</td>
<td>0.59734</td>
<td>0.88426</td>
<td>0.88688</td>
<td>0.64225</td>
<td>0.66316</td>
<td>0.65065</td>
<td>0.42743</td>
<td>0.84522</td>
<td>0.78587</td>
</tr>
<tr>
<td>ErnxUS</td>
<td>0.72240</td>
<td>0.59734</td>
<td>0.72434</td>
<td>0.75370</td>
<td>0.97201</td>
<td>0.99052</td>
<td>0.86439</td>
<td>0.89426</td>
<td>0.87125</td>
</tr>
</tbody>
</table>
and then visualize them by a pairs plot.
It is not easy to compare pairwise correlations in the number matrix or even in the pairwise correlation plot when the number of elements becomes large. In the following we show an alternative image plot to display correlations from a large correlation matrix. The individual steps are the following:

Step 1: Convert the data into a matrix object, get the number of columns abbreviate the column and row names, and compute the correlations

\[
\begin{align*}
&> R = \text{as.matrix}(\text{Caps}) \\
&> n = \text{ncol}(R) \\
&> \text{Names} = \text{abbreviate}\left(\text{colnames}(R), 4\right) \\
&> \text{corr} <- \text{cor}(R)
\end{align*}
\]

Step 2: Compute the appropriate colour for each pairwise correlation for the use in the image plot

\[
\begin{align*}
&> \text{ncolors} <- 10 * \text{length}\left(\text{unique}(\text{as.vector}(\text{corr}))\right) \\
&> k <- \text{round}\left(\text{ncolors}/2\right) \\
&> r <- \text{c}(\text{rep}(0, k), \text{seq}(0, 1, \text{length} = k)) \\
&> g <- \text{c}(\text{rev}(\text{seq}(0, 1, \text{length} = k)), \text{rep}(0, k)) \\
&> b <- \text{rep}(0, 2 * k) \\
&> \text{corrColorMatrix} <- (\text{rgb}(r, g, b))
\end{align*}
\]

Step 3: Plot the image, add axis labels, title and a box around the image

\[
\begin{align*}
&> \text{image}\left(x = 1:n, y = 1:n, z = \text{corr}[\,, n:1], \text{col} = \text{corrColorMatrix}, \right. \\
&> \quad \left. \text{axes} = \text{FALSE}, \text{main} = \"\", \text{xlab} = \"\", \text{ylab} = \"\") \\
&> \text{axis}(2, \text{at} = n:1, \text{labels} = \text{colnames}(R), \text{las} = 2) \\
&> \text{axis}(1, \text{at} = 1:n, \text{labels} = \text{colnames}(R), \text{las} = 2) \\
&> \text{title}(\text{main} = \"\text{Pearson Correlation Image Matrix}\") \\
&> \text{box}()
\end{align*}
\]

Step 4: Add the values of the pairwise correlations as text strings to each cell of the image plot

\[
\begin{align*}
&> x = y = 1:n \\
&> nx = ny = \text{length}(y) \\
&> \text{xoy} = \text{cbind}(\text{rep}(x, ny), \text{as.vector}(\text{matrix}(y, nx, ny, \text{byrow} = \text{TRUE}))) \\
&> \text{coord} = \text{matrix}(\text{xoy}, nx * ny, 2, \text{byrow} = \text{FALSE}) \\
&> X = \text{t}(\text{corr}) \\
&> \text{for } (i \text{ in } 1:(n * n)) { \\
&\quad \text{text}(\text{coord}[i, 1], \text{coord}[n * n + 1 - i, 2], \text{round}(X[\text{coord}[i, \\
&\quad \quad 1], \text{coord}[i, 2]], \text{digits} = 2), \text{col} = \"\text{white}\", \text{cex} = 0.7) \\
&\}
\end{align*}
\]

It is left to the reader to build a function around the above code snippets.

**Example: Pension fund benchmark portfolio**

In a second example we explore the data set of assets classes which are part of the Swiss pension fund benchmark. The Pictet LPP-Indices are a family of Benchmarks of Swiss Pension Funds. The LPP indices were created in 1985 by the Swiss Private Bank Pictet &
### Figure 16.2: An image plot of correlations between the market capitalizations of the world's major stock markets in the years 2003 to 2008. The numbers in the squares are the computed values for the pairwise correlations, the colour visualizes the correlations: red shows high, and green shows low correlations.
Cie with the introduction of new Swiss regulations governing the investment of pension fund assets. Since then it has established itself as the authoritative pension fund index for Switzerland. Several adjustments have been made by launching new LPP-indices in 1993, 2000 and 2005. The LPP 2005 family of indices was introduced in 2005 and consists of three members named LPP25, LPP40 and LPP60 describing three indices with an increasing risk profile. The data set considered here covers the daily log-returns of three benchmark series with low, medium and high risk, and 6 asset classes from which they were constructed.

```r
> data(PensionFund)
```

this returned a `data.frame` object, but we prefer to coerce the pension fund data into a `timeSeries` object

```r
> PensionFund = 100 * as.timeSeries(PensionFund)
```

```r
> head(round(PensionFund, 3), 10)
```

<table>
<thead>
<tr>
<th>GMT</th>
<th>SBI</th>
<th>SPI</th>
<th>SII</th>
<th>LMI</th>
<th>MPI</th>
<th>ALT</th>
<th>LPP25</th>
<th>LPP40</th>
<th>LPP60</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-11-01</td>
<td>-0.061</td>
<td>0.841</td>
<td>-0.319</td>
<td>-0.111</td>
<td>0.155</td>
<td>-0.257</td>
<td>-0.013</td>
<td>0.020</td>
<td>0.081</td>
</tr>
<tr>
<td>2005-11-02</td>
<td>-0.276</td>
<td>0.252</td>
<td>-0.412</td>
<td>-0.118</td>
<td>0.034</td>
<td>-0.114</td>
<td>-0.156</td>
<td>-0.112</td>
<td>0.047</td>
</tr>
<tr>
<td>2005-11-03</td>
<td>-0.115</td>
<td>1.271</td>
<td>-0.521</td>
<td>-0.099</td>
<td>1.050</td>
<td>0.501</td>
<td>0.154</td>
<td>0.332</td>
<td>0.573</td>
</tr>
<tr>
<td>2005-11-04</td>
<td>-0.324</td>
<td>-0.070</td>
<td>-0.113</td>
<td>-0.120</td>
<td>1.168</td>
<td>0.948</td>
<td>0.044</td>
<td>0.242</td>
<td>0.484</td>
</tr>
<tr>
<td>2005-11-07</td>
<td>0.131</td>
<td>0.621</td>
<td>-0.180</td>
<td>0.036</td>
<td>0.271</td>
<td>0.472</td>
<td>0.164</td>
<td>0.225</td>
<td>0.381</td>
</tr>
<tr>
<td>2005-11-08</td>
<td>0.054</td>
<td>0.033</td>
<td>0.210</td>
<td>0.233</td>
<td>0.035</td>
<td>0.085</td>
<td>0.109</td>
<td>0.096</td>
<td>0.083</td>
</tr>
<tr>
<td>2005-11-09</td>
<td>-0.255</td>
<td>-0.238</td>
<td>-0.190</td>
<td>-0.204</td>
<td>0.169</td>
<td>0.360</td>
<td>-0.137</td>
<td>-0.063</td>
<td>0.023</td>
</tr>
<tr>
<td>2005-11-10</td>
<td>0.100</td>
<td>0.092</td>
<td>0.103</td>
<td>0.144</td>
<td>0.017</td>
<td>0.242</td>
<td>0.107</td>
<td>0.106</td>
<td>0.102</td>
</tr>
<tr>
<td>2005-11-11</td>
<td>0.062</td>
<td>1.333</td>
<td>0.046</td>
<td>0.065</td>
<td>0.735</td>
<td>1.071</td>
<td>0.317</td>
<td>0.475</td>
<td>0.682</td>
</tr>
<tr>
<td>2005-11-14</td>
<td>0.069</td>
<td>-0.469</td>
<td>-0.087</td>
<td>-0.070</td>
<td>0.001</td>
<td>-0.100</td>
<td>-0.039</td>
<td>-0.059</td>
<td>0.095</td>
</tr>
</tbody>
</table>
```

Furthermore, to work with daily percentage returns, we have multiplied the series with 100.

Now let us plot the multivariate time series using the generic plot function for objects of class `timeSeries`

```r
> plot(PensionFund[, -8])
```

Basic column statistics can easily be computed using the functions from the `colStats()` family of functions

Listing 16.1: The family of functions to compute column statistical properties of financial and economic time series data.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>colStats</code></td>
<td>Calculates column statistics</td>
</tr>
<tr>
<td><code>colSums</code></td>
<td>Calculates column sums</td>
</tr>
<tr>
<td><code>colMeans</code></td>
<td>Calculates column means</td>
</tr>
<tr>
<td><code>colSds</code></td>
<td>Calculates column standard deviations</td>
</tr>
<tr>
<td><code>colVars</code></td>
<td>Calculates column variances</td>
</tr>
<tr>
<td><code>colSkewness</code></td>
<td>Calculates column skewness</td>
</tr>
</tbody>
</table>
16.1. Correlations and Pairwise Plots

![Time series plot of the Swiss pension fund benchmark Portfolio LPP2005.](image)

Figure 16.3: Time series plot of the Swiss pension fund benchmark Portfolio LPP2005. We have plotted the returns for the three Swiss assets, the three foreign assets, and for two of the benchmarks, the ones with the lowest and highest risk.

Here we want to compute the first two moment related statistics, the column means:

```r
> colMeans(PensionFund)
SBI    SPI    SII    LMI    MPI    ALT    LPP25
4.0663e-05 8.4175e-02 2.3894e-02 5.5315e-03 5.9052e-02 8.5768e-02 2.3318e-02
```

- colKurtosis: calculates column kurtosis,
- colMaxs: calculates maximum values in each column,
- colMins: calculates minimum values in each column,
- colProds: computes product of all values in each column,
- colQuantiles: computes quantiles of each column.
the column standard deviations

\[
> \text{colSds(PensionFund)}
\]

SBI SPI SII LMI MPI ALT LPP25 LPP40 LPP60
0.12609 0.76460 0.29178 0.12227 0.73146 0.56844 0.18067 0.28110 0.42343

Show the pairs correlations

\[
> \text{pairs(PensionFund, cex = 0.7, col = "steelblue", pch = 19)}
\]

16.2 Stars and Segments Plots

The \texttt{stars()} plotting function is another method to visualize similarities in a multivariate data set. Each star plot or segment diagram represents
one row of the input x. Variables (columns) start on the right and wind counterclockwise around the circle. The size of the (scaled) column is shown by the distance from the centre to the point on the star or the radius of the segment representing the variable.

Example: World major stock market capitalization

For an exploratory data analysis of similarities we can plot a star graph

```r
> stars(Caps, draw.segments = TRUE, labels = 2003:2008, ncol = 3)
```

The stars plot shows us the chronological development of the stock markets of the six years ranging from 2003 to 2008. The argument `draw.segments` was changed to `TRUE` to return a segment plot instead of the default star plot. The argument `labels` adds the years to the plot. Finally let us decorate the plot with a main title and a marginal text with the source of the data.

```r
> title(main = "Stock Market Capitalizations 2003 - 2008")
> mtext(side = 4, text = "Source: WEF Annual Report 2008", cex = 0.8, adj = 0, col = "darkgrey")
```

A second view to the data can be obtained if we transpose the data matrix. In this case we do not get displayed the development of the stock market capitalization over the years, instead we get the desired comparison of the different markets.

```r
> stars(t(Caps), draw.segments = TRUE)
> title(main = "Capitalizations by Stock Market")
> mtext(side = 4, text = "Source: WEF Annual Report 2008", cex = 0.8, adj = 0, col = "darkgrey")
```

Example: Creating feature vectors

To compare the individual assets in the Swiss Pension Fund benchmark we can create feature vectors, for example of the basic distributional properties expressed by a box plot.

```r
> x = as.data.frame(PensionFund)
> boxFeatures = boxplot(x, las = 2, col = topo.colors(9), pch = 19)
> abline(h = 0, lty = 3)
> title(main = "LPP Box Plot")
```

The returned value of the `boxplot()` function is a list with the `$stats` matrix entry amongst others. For the $stats matrix, each column contains the extreme of the lower whisker, the lower hinge, the median, the upper hinge and the extreme of the upper whisker for one group/plot.

```r
> stars(t(boxFeatures$stats), labels = names(PensionFund), draw.segments = TRUE)
> title(main = "Boxplot Feature Vectors")
```
Stock Market Capitalizations 2003 – 2008

![Stars plots showing growth of stock market capitalization from 2003 to 2008](source: WEF Annual Report 2008)

Figure 16.5: The stars plots show the growth of the market capitalization of the world major stock markets from 2003 to 2008. The plot shows impressively how the markets were raising up to 2007 and then collapsed 2008 during the subprime crises.

16.3 **K-means Clustering**

In statistics, *k-means clustering* is a method of cluster analysis which aims to partition *n* observations into *k* clusters in which each observation belongs to the cluster with the nearest mean.

R's function `kmeans()` provides a variety of algorithms. The algorithm of Hartigan and Wong (1979) is used by default. Note that some authors use k-means to refer to a specific algorithm rather than the general method: most commonly the algorithm given by MacQueen (1967) but sometimes that given by Lloyd (1957) and Forgy (1965). The Hartigan-Wong algorithm generally does a better job than either of those, but trying several random starts is often recommended.
Figure 16.6: The stars plots compares the capitalizations of the world major stock markets. The 6 sectors of the stars show the temporal growth and fall from the year 2002 to 2008. Three groups of market can clearly be seen: The biggest market, Euronext US is dominant, Tokyo, London and Euronext EU form a second group, and the remaining stock markets fall in the third group.
Figure 16.7: The stars plots compares the distributional properties of the financial returns of the pension fund portfolio, plotting the extreme of the lower whisker, the lower hinge, the median, the upper hinge and the extreme of the upper whisker for each asset class and the the three benchmarks.
16.3. **K-means Clustering**

Example: World major stock market capitalization

Which stock markets are similar?

```r
> kmeans(t(Caps), centers = 3)
K-means clustering with 3 clusters of sizes 1, 9, 3

Cluster means:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1328.95</td>
<td>12707.58</td>
<td>3632.3</td>
<td>15421.2</td>
<td>15650.8</td>
<td>9208.93</td>
</tr>
<tr>
<td>2</td>
<td>623.64</td>
<td>760.06</td>
<td>868.1</td>
<td>1243.9</td>
<td>2052.2</td>
<td>959.46</td>
</tr>
<tr>
<td>3</td>
<td>2496.52</td>
<td>2954.73</td>
<td>3446.0</td>
<td>4040.4</td>
<td>4135.1</td>
<td>2361.90</td>
</tr>
</tbody>
</table>

Clustering vector:

ErnxUS TSXGrp AstrSE BmbySE HngKSE NSEInd ShngSE TokySE BMESSE DtschB LndnSE

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErnxEU</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Within cluster sum of squares by cluster:

[1] 9014079 4491426

Available components:

[1] "cluster" "centers" "withinss" "size"

Note we observe the same three groups as expected from the star plot. To confirm this result inspect the clustering vector. The group named "2" contains the Euronext US stock exchange, the group named "3" contains the London, Tokyo and Euronext EU stock exchanges, and the remaining (smaller) stock exchanges are listed in group named "1".

**Example: Pension fund benchmark portfolio**

```r
> features = t(boxFeatures$stats)
> rownames(features) = rownames(PensionFund)
> colnames(features) = c("lower whisker", "lower hinge", "median", "upper hinge", "upper whisker")
> kmeans(features, center = 3)
K-means clustering with 3 clusters of sizes 3, 3, 3

Cluster means:

<table>
<thead>
<tr>
<th></th>
<th>lower whisker</th>
<th>lower hinge</th>
<th>median</th>
<th>upper hinge</th>
<th>upper whisker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.66441</td>
<td>-0.143260</td>
<td>0.041890</td>
<td>0.23043</td>
<td>0.75932</td>
</tr>
<tr>
<td>2</td>
<td>-1.34477</td>
<td>-0.265176</td>
<td>0.100851</td>
<td>0.48579</td>
<td>1.57098</td>
</tr>
<tr>
<td>3</td>
<td>-0.32829</td>
<td>-0.077806</td>
<td>0.010597</td>
<td>0.09635</td>
<td>0.34018</td>
</tr>
</tbody>
</table>

Clustering vector:

<table>
<thead>
<tr>
<th>SBI</th>
<th>SPI</th>
<th>SII</th>
<th>LMI</th>
<th>MPI</th>
<th>ALT</th>
<th>LPP25</th>
<th>LPP40</th>
<th>LPP60</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Within cluster sum of squares by cluster:

[1] 0.121471 0.062491 0.020388
The clustering of the box plot features are grouped in the following sense:
Group "3" contains the low risk assets SMI, LMI and LPP25, Group "2" ...
Check the result, I am (DW) not satisfied with it ...

16.4 Hierarchical Clustering

In statistics hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types: (i) Agglomerative, this is a "bottom up" approach where each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy ans (ii) Divisive, this is a "top down" approach where all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy. In general, the merges and splits are determined in a greedy manner. The results of hierarchical clustering are usually presented in a hierarchical tree graph named dendrogram.

Dissimilarity Measure: In order to decide which clusters should be combined (for agglomerative), or where a cluster should be split (for divisive), a measure of dissimilarity between sets of observations is required. In most methods of hierarchical clustering, this is achieved by use of an appropriate metric (a measure of distance between pairs of observations), and a linkage criteria which specifies the dissimilarity of sets as a function of the pairwise distances of observations in the sets.

Metric: The choice of an appropriate metric will influence the shape of the clusters, as some elements may be close to one another according to one distance and farther away according to another. Some commonly used metrics for hierarchical clustering include: (i) Euclidean distance, (ii) maximum distance, (iii) Manhattan distance, (iv) Canberra distance, (v) binary distance. (vi) Minkowski distance. For details we refer to R's help page for the function `dist()` which computes and returns the distance matrix for a given data set.

Linkage:
R has several functions for hierarchical clustering, see the CRAN Task View Cluster Analysis and Finite Mixture Models for more information.

Example: Major world stock market capitalization

Now we investigate the question how are the stock markets related performing a hierarchical clustering.

```r
> Dist = dist(t(Caps), method = "manhattan")
> class(Dist)
```
Cluster Dendrogram

![Cluster Dendrogram](image)

Figure 16.8: A dendrogram plot from clustering major world stock market capitalization.

```r
[1] "dist"
> Dist
     ErnxUS TSXGrp  AstrSE BmbySE  HngKSE  NSEInd  ShngSE  TokySE
TSXGrp 49480.68
AstrSE 52705.88 3225.19
BmbySE 53446.53 3965.85 1782.22
HngKSE 49620.57 1694.75 3085.30 3825.96
NSEInd 53783.13 4302.45 1800.82  336.60 4162.56
ShngSE 50951.95 5270.67 4521.10 3172.36 3604.41 3388.67
TokySE 39934.79 14675.38 17900.57 18641.23 14815.27 18977.83 16146.65
BmESSE 51270.54 1789.86 1435.33 2251.92 1831.68 4461.84 16465.24
DtschB 49661.73  690.01 3104.14 3844.80 1708.34 4181.40 5158.07 14796.43
LndnSE 42314.33 9428.57 12653.77 13394.42  9568.46 13731.02 18899.84 5246.81
ErnxEU 42183.10 8792.49 12017.69 12758.34 8932.38 13094.95 10263.76 5882.89
SIX SE 52120.51 2639.83  639.90 2422.12 2524.96 2440.72 4814.13 17315.21
BmESSE DtschB LndnSE ErnxEU
```
TSXGrp
AstrSE
BmbySE
HngKSE
NSEInd
ShngSE
TokySE
BMESSE
DtschB 1668.81
LndnSE 11218.43 9549.62
ErnxEU 10582.35 8913.55 1845.21
SIX SE 851.69 2518.78 12068.40 11432.33

> Clust = hclust(Dist, method = "complete")
> plot(Clust)

Again, the result is the same.

Example: Pension fund benchmark portfolio

> X = t(getDataPart(PensionFund))
> Dist = dist(X, "euclidean")
> Clust = hclust(Dist, "complete")
> plot(Clust)
> box()
Cluster Dendrogram

Dist
hclust (*, "complete")

FIGURE 16.9: A dendrogram plot from clustering Swiss pension fund portfolio.
PART V

CASE STUDIES: UTILITY FUNCTIONS
CHAPTER 17

COMPUTE SKEWNESS STATISTICS

17.1 ASSIGNMENT

The basic R environment has no function to compute the skewness statistics for a data set. Let us add one in the style of the functions mean() and var().

There exist several flavours to compute the skewness of a numerical vector. Two of these are the ‘moment’ or ‘fisher’ methods. Our definitions follow the implementation of the skewness function in SPlus: The "moment" forms are based on the definitions of skewness and kurtosis for distributions; these forms should be used when resampling (bootstrap or jackknife). The "fisher" forms correspond to the usual ‘unbiased’ definition of sample variance, though in the case of skewness exact unbiasedness is not possible (SPlus 2009).

17.2 R IMPLEMENTATION

First let us define an S3 method for the skewness

```r
> skewness <- function(x, ...) {
  UseMethod("skewness")
}
```

The default method is thought to handle numeric objects. We formulate three arguments, the numerical object x, a logical flag na.rm to decide if missing values should be removed, and the name of the statistical method to how to compute the skewness.

The function contains the following steps:

1. check input object
2. check for valid method
3. remove optionally NAs
4. transform integers to numeric values if required

5. compute the skewness for the desired method

6. add the name of the method as an attribute to the final result.

```r
> skewness.default <-
  function (x, na.rm = FALSE, method = c("moment", "fisher"), ...)
  {
    # Arguments:
    #  x - any numerical object
    #  na.rm - logical flag, should missing values be removed?
    #  method - character string specifying the computation method.
    #    "fisher" for Fisher's g1 skewness version
    #    "moment" for the functional forms of the statistics
    #    ... - not used
    #  1 Check Input Object x:
    if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
      warning("argument is not numeric or logical: returning NA")
      return(as.numeric(NA))
    }
    #  2 Check Method:
    method <- match.arg(method)
    #  3 Remove NAs:
    if (na.rm) x = x[!is.na(x)]
    #  4 Transform to Numeric:
    n = length(x)
    if (is.integer(x)) x = as.numeric(x)
    #  5 Compute Selected Method:
    if (method == "moment") {
      skewness = sum((x-mean(x))^3/sqrt(var(x))^3)/length(x)
    } else {
      if (n < 3) skewness = NA
      else skewness = ((sqrt(n *(n-1))/(n-2))*(sum(x^3)/n))/((sum(x^2)/n)^(3/2))
    }
    #  6 Add Control Attribute:
    attr(skewness, "method") <- method
    #  Return Value:
    skewness
  }
```
17.3 Examples

As an example, let us compute the skewness for a vector of 100 standardized normal variables.

```r
> set.seed(1943)
> skewness(rnorm(100))
[1] -0.023230
attr(, "method")
[1] "moment"
```
CHAPTER 18

COMPUTE KURTOSIS STATISTICS

18.1 ASSIGNMENT

As in the case of the skewness() function, the basic R environment has no function to compute the kurtosis statistics for a data set. Let us add one in the style of the function skewness().

As in the previous example we follow the implementation of the kurtosis in the SPlus environment, 2009. The kurtosis function in SPlus allows for three different choices of computations, "excess", "moment", and "fisher". The first method stands for the excess kurtosis, the second for the moments statistics and the third for Fisher's g_2 kurtosis version.

18.2 R IMPLEMENTATION

Following the procedure of the previous case study, let us define the S3 method for the kurtosis() function

```r
> kurtosis <- function(x, ...) {
  UseMethod("kurtosis")
}
```

and then implement the default method for numeric objects.

```r
> kurtosis.default <-
  function (x, na.rm=FALSE, method=c("excess", "moment", "fisher"), ...)
  {
    # Arguments:
    # x - any numerical object
    # na.rm - logical flag, should missing values be removed?
    # method - character string specifying the computation method.
    # "fisher" for Fisher's $g_2$ kurtosis version
    # "moment" for the functional forms of the statistics
    # "excess" for the excess kurtosis

    # 1 Check Input Object x:
    if (!is.numeric(x) & & !is.complex(x) & & !is.logical(x)) {
      # Add error handling here
    }
  }
```

203
warning("argument is not numeric or logical: returning NA")
return(as.numeric(NA))

2 Check Method:
method = match.arg(method)

3 Remove NAs:
if (na.rm) x = x[!is.na(x)]

4 Transform to Numeric:
n = length(x)
if (is.integer(x)) x = as.numeric(x)

5 Compute Selected Method:
if (method == "excess") {
kurtosis = sum((x-mean(x))^4/var(x)^2)/length(x) - 3
}
if (method == "moment") {
kurtosis = sum((x-mean(x))^4/var(x)^2)/length(x)
}
if (method == "fisher") {
kurtosis = ((n+1)*(n-1)*((sum(x^4)/n)/(sum(x^2)/n)^2 -
(3*(n-1))/(n+1)))/((n-2)*(n-3))
}

6 Add Control Attribute:
attr(kurtosis, "method") <- method

Return Value:
kurtosis

18.3 Examples

Compute the kurtosis for a sample of 100 normal random numbers with mean zero and variance one

> set.seed(4711)
> x <- rnorm(1000)
> kurtosis(x)
[1] -0.068852
attr("method")
[1] "excess"

Now compute the moment kurtosis

> kurtosis(x, method = "moment")
[1] 2.9311
attr("method")
[1] "moment"
CHAPTER 19

EXTRACTING PACKAGE DESCRIPTION

19.1 ASSIGNMENT

Write an R function which extracts the DESCRIPTION file from a desired package.

19.2 R IMPLEMENTATION

We compose the command as a text string, parse the text and evaluate the command. As an example for a typical R package we use the utils package.

```r
> package <- "utils"
> cmd <- paste("library(help=", package, ")", sep = "")
> ans <- eval(parse(text = cmd))
```

The `library()` returns a list with three elements, where the last element named `info` is by itself an unnamed list with three elements,

```r
> names(ans)
[1] "name" "path" "info"
> length(ans$info)
[1] 3
```

The first contains the description information

```r
> ans$info[[1]]
[1] "Package:      utils"
[2] "Version:     2.11.1"
[3] "Priority:    base"
[4] "Title:       The R Utils Package"
[5] "Author:      R Development Core Team and contributors worldwide"
[6] "Maintainer:  R Core Team <R-core@r-project.org>"
[7] "Description: R utility functions"
[8] "License:     Part of R 2.11.1"
[9] "Built:       R 2.11.1; 2010-05-31 14:42:44 UTC; unix"
```
Now let us put everything together and write the R function `listDescription()`

```r
> listDescription <- function(package) {
    # Arguments:
    # package - a character, the name of the package

    # Extract Description:
    cmd = paste("library(help =", package, ", sep = ""
    ans = eval(parse(text = cmd))
    description = ans$info[[1]]

    # Return Value:
    cat("\n", package, "Description:\n\n")
    cat(paste(" ", description), sep = "\n")
    invisible()
}
```

Note that the second list entry `ans$info[[1]]` contains the index information. As an exercise write a function `listIndex()` which extracts the index information.

19.3 Examples

Here comes an example how to use the function `listDescription()`

```r
> listDescription("utils")
utils Description:

Package: utils
Version: 2.11.1
Priority: base
Title: The R Utils Package
Author: R Development Core Team and contributors worldwide
Maintainer: R Core Team <R-core@r-project.org>
Description: R utility functions
License: Part of R 2.11.1
Built: R 2.11.1; 2010-05-31 14:42:44 UTC; unix
```
CHAPTER 20

FUNCTION LISTING AND COUNTING

20.1 ASSIGNMENT

Write R functions which list the function names and the number of functions in a given R package.

20.2 R IMPLEMENTATION

Let us start to write a function which lists all functions by name in an R package. First we check if the package is loaded calling the function require(). Note that require() returns (invisibly) a logical indicating whether the required package is available. If the package is loaded we list the functions

```r
> listFunctions <- function(package) {
  # Arguments:
  # package - a character string, the name of the Package
  # Listing - Original code borrowed from B. Ripley:

  # 1 Package loaded?
  loaded <- require(package, character.only = TRUE, quietly = TRUE)

  # 2 Function listing, if package was loaded:
  if(loaded) {
    # List Names:
    env <- paste("package", package, sep = ":")
    nm <- ls(env, all = TRUE)
    ans = nm[unlist(lapply(nm, function(n) exists(n, where = env,
      mode = "function", inherits = FALSE)))]
  } else {
    ans = character(0)
  }
}
```
Now let us write a function to count the number of functions in a given package. Here use the previous function listing and just compute the length of the returned vector.

```r
> countFunctions <- function(package) {
  # Arguments:
  # package - a character string, the name of the Package
  # Count Functions:
  ans = length(listFunctions(package))
  names(ans) = package
  # Return Value:
  ans
}
```

20.3 Examples

List all functions in the `utils` package by name.

```r
> listFunctions("utils")
```

```
[1] "?" 
[3] "alarm" 
[5] "argsAnywhere" 
[7] "as.personList" 
[9] "as.roman" 
[11] "assignInNamespace" 
[13] "browseEnv" 
[15] "browseVignettes" 
[17] "capture.output" 
[19] "chooseBioCmirror" 
[21] "citation" 
[23] "citFooter" 
[25] "close.socket" 
[27] "compareVersion" 
[29] "count.fields" 
[31] "data" 
[33] "dataentry" 
[35] "de.ncols" 
[37] "de.setup" 
[39] "demo" 
[41] "download.packages" 
[43] "edit" 
[45] "example" 
[47] "file.edit" 
[49] "findLineNum" 
[51] "fixInNamespace"
```
20.3. Examples

<table>
<thead>
<tr>
<th>Procedure Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>formatOL</code></td>
<td>formatUL</td>
</tr>
<tr>
<td><code>getAnywhere</code></td>
<td>getCRANmirrors</td>
</tr>
<tr>
<td><code>getFromNamespace</code></td>
<td>getS3method</td>
</tr>
<tr>
<td><code>getTxtProgressBar</code></td>
<td>glob2rx</td>
</tr>
<tr>
<td><code>head</code></td>
<td>head.matrix</td>
</tr>
<tr>
<td><code>help</code></td>
<td>help.request</td>
</tr>
<tr>
<td><code>help.search</code></td>
<td>help.start</td>
</tr>
<tr>
<td><code>history</code></td>
<td>install.packages</td>
</tr>
<tr>
<td><code>installed.packages</code></td>
<td>is.relistable</td>
</tr>
<tr>
<td><code>limitedLabels</code></td>
<td>loadhistory</td>
</tr>
<tr>
<td><code>localeToCharset</code></td>
<td>ls.str</td>
</tr>
<tr>
<td><code>lsf.str</code></td>
<td>maintainer</td>
</tr>
<tr>
<td><code>make.packages.html</code></td>
<td>make.socket</td>
</tr>
<tr>
<td><code>makeRweaveLatexCodeRunner</code></td>
<td>memory.limit</td>
</tr>
<tr>
<td><code>memory.size</code></td>
<td>menu</td>
</tr>
<tr>
<td><code>methods</code></td>
<td>mirror2html</td>
</tr>
<tr>
<td><code>modifyList</code></td>
<td>new.packages</td>
</tr>
<tr>
<td><code>news</code></td>
<td>normalizePath</td>
</tr>
<tr>
<td><code>nsi</code></td>
<td>object.size</td>
</tr>
<tr>
<td><code>old.packages</code></td>
<td>package.contents</td>
</tr>
<tr>
<td><code>package.skeleton</code></td>
<td>packageDescription</td>
</tr>
<tr>
<td><code>packageStatus</code></td>
<td>page</td>
</tr>
<tr>
<td><code>person</code></td>
<td>personList</td>
</tr>
<tr>
<td><code>pico</code></td>
<td>prompt</td>
</tr>
<tr>
<td><code>promptData</code></td>
<td>promptPackage</td>
</tr>
<tr>
<td><code>rc.getOption</code></td>
<td>rc.options</td>
</tr>
<tr>
<td><code>rc.settings</code></td>
<td>rc.status</td>
</tr>
<tr>
<td><code>read.csv</code></td>
<td>read.csv2</td>
</tr>
<tr>
<td><code>read.delim</code></td>
<td>read.delim2</td>
</tr>
<tr>
<td><code>read.DIF</code></td>
<td>read.fortran</td>
</tr>
<tr>
<td><code>read.fwf</code></td>
<td>read.socket</td>
</tr>
<tr>
<td><code>read.table</code></td>
<td>readCitationFile</td>
</tr>
<tr>
<td><code>recover</code></td>
<td>relist</td>
</tr>
<tr>
<td><code>remove.packages</code></td>
<td>Rprof</td>
</tr>
<tr>
<td><code>Rprofmem</code></td>
<td>RShowDoc</td>
</tr>
<tr>
<td><code>RSiteSearch</code></td>
<td>rtags</td>
</tr>
<tr>
<td><code>Rtangle</code></td>
<td>RtangleSetup</td>
</tr>
<tr>
<td><code>RtangleWritedoc</code></td>
<td>RweaveChunkPrefix</td>
</tr>
<tr>
<td><code>RweaveEvalWithOpt</code></td>
<td>RweaveLatex</td>
</tr>
<tr>
<td><code>RweaveLatexFinish</code></td>
<td>RweaveLatexOptions</td>
</tr>
<tr>
<td><code>RweaveLatexSetup</code></td>
<td>RweaveLatexWritedoc</td>
</tr>
<tr>
<td><code>RweaveTryStop</code></td>
<td>savehistory</td>
</tr>
<tr>
<td><code>select.list</code></td>
<td>sessionInfo</td>
</tr>
<tr>
<td><code>setBreakpoint</code></td>
<td>setRepositories</td>
</tr>
<tr>
<td><code>setTxtProgressBar</code></td>
<td>stack</td>
</tr>
<tr>
<td><code>Stangle</code></td>
<td>str</td>
</tr>
<tr>
<td><code>strOptions</code></td>
<td>summaryRprof</td>
</tr>
<tr>
<td><code>Sweave</code></td>
<td>SweaveHooks</td>
</tr>
<tr>
<td><code>SweaveSyntConv</code></td>
<td>tail</td>
</tr>
<tr>
<td><code>tail.matrix</code></td>
<td>tar</td>
</tr>
<tr>
<td><code>timestamp</code></td>
<td>toBibtex</td>
</tr>
<tr>
<td><code>toLatex</code></td>
<td>txtProgressBar</td>
</tr>
<tr>
<td><code>type.convert</code></td>
<td>unstack</td>
</tr>
<tr>
<td><code>untar</code></td>
<td>unzip</td>
</tr>
<tr>
<td><code>update.packages</code></td>
<td>update.packageStatus</td>
</tr>
</tbody>
</table>
How many functions are in the `utils` package?

```r
> countFunctions("utils")
utils
  177
```
PART VI

CASE STUDIES: ASSET MANAGEMENT
CHAPTER 21

GENERALIZED ERROR DISTRIBUTION

21.1 ASSIGNMENT

Write R functions for the Generalized Error Distribution, GED. Nelson [1991] introduced the Generalized Error Distribution for modeling GARCH time series processes. The GED has exponentially stretched tails. The GED includes the normal distribution as a special case, along with many other distributions. Some are more fat tailed than the normal, for example the double exponential, and others are more thin-tailed like the uniform distribution.

Write R functions to compute density, probabilities and quantiles for the GED. Write an R function to generate random variates. Write an R function to estimate the parameters for a GED using the maximum log-likelihood approach.

References

21.2 R IMPLEMENTATION

The density of the standardized GED is described by the following formula

$$f(x) = \frac{v \exp[-\frac{1}{2} |z/\lambda^v|]}{\lambda^{(1+1/v)\Gamma(1/v)}}$$ \hspace{1cm} (21.1)

where $\Gamma()$ is the gamma function, and
\(\lambda \equiv \left[2^{-2/\nu} \Gamma(1/\nu)/\Gamma(3/\nu) \right]^{1/2} \)

(21.2)

\(\nu \) is a tail-thickness parameter. When \(\nu = 2 \), \(x \) has a standard normal distribution. For \(\nu < 2 \), the distribution of \(x \) has thicker tails than the normal. For example when \(\nu = 1 \), \(x \) has a double exponential distribution. For \(\nu > 2 \), the distribution has thinner tails than the normal, for \(\nu = \infty \), \(x \) is uniformly distributed on the interval \([-\sqrt{3}, \sqrt{3}]\).

GED density function

Write an R function to compute the density for the GED.

```R
dged <- function(x, mean = 0, sd = 1, nu = 2) {
  z = (x - mean)/sd
  lambda = sqrt(2^(-2/nu) * gamma(1/nu)/gamma(3/nu))
  g = nu/(lambda * (2^(1 + 1/nu)) * gamma(1/nu))
  density = g * exp(-0.5 * (abs(z/lambda))^nu)/sd
  density
}
```

GED probability function

Write an R function to compute the probability function for the GED.

```R
pged <- function(q, mean = 0, sd = 1, nu = 2) {
  q = (q - mean)/sd
  lambda = sqrt(2^(-2/nu) * gamma(1/nu)/gamma(3/nu))
  g = nu/(lambda * (2^(1 + 1/nu)) * gamma(1/nu))
  h = 2^(1/nu) * lambda * g * gamma(1/nu)/nu
  s = 0.5 * (abs(q)/lambda)^nu
  probability = 0.5 + sign(q) * h * pgamma(s, 1/nu)
  probability
}
```

GED quantile function

Write an R function to compute the quantile function for the GED.

```R
qged <- function(p, mean = 0, sd = 1, nu = 2) {
  lambda = sqrt(2^(-2/nu) * gamma(1/nu)/gamma(3/nu))
  q = lambda * (2 * qgamma((abs(2 * p - 1)), 1/nu))^(1/nu)
  quantiles = q * sign(2 * p - 1) * sd + mean
  quantiles
}
```

GED random number generation

Write an R function to generate random variates from the GED.
GED parameter estimation

Write an R function to estimate the parameters from empirical return series data for a GED using the maximum log-likelihood approach.

```r
> gedFit <- function(x, ...) {
  start = c(mean = mean(x), sd = sqrt(var(x)), nu = 2)
  loglik = function(x, y = x) {
    f = -sum(log(dged(y, x[1], x[2], x[3])))
    f
  }
  fit = nlminb(start = start, objective = loglik, lower = c(-Inf, 0, 0), upper = c(Inf, Inf, Inf), y = x, ...)
  names(fit$par) = c("mean", "sd", "nu")
  fit
}
```

21.3 Examples

Plot GED density

Compute and display the GED Density with zero mean and unit variance in the range (-4,4) for three different parameter settings of ν, 1, 2, and 3.

```r
> x = seq(-4, 4, length = 501)
> y = dged(x, mean = 0, sd = 1, nu = 1)
> plot(x, y, type = "l", col = "blue", main = "GED", ylab = "Density", xlab = "")
> y = dged(x, mean = 0, sd = 1, nu = 2)
> lines(x, y, col = "red")
> y = dged(x, mean = 0, sd = 1, nu = 3)
> lines(x, y, col = "green")
> abline(h = 0, col = "grey")
```

Normalization of the GED density

Show for a random parameter setting of the mean and standard deviation that the GED density is normalized.

```r
> set.seed(4711)
> MEAN = rnorm(1)
> SD = runif(1)
> for (NU in 1:3) print(integrate(dged, -Inf, Inf, mean = MEAN,
```
Repeat this computation for other settings of MEAN and SD.

Check the pged and qged functions

To check these functions, here for zero mean and unit standard deviation, we compute the quantiles from the probabilities of quantiles.

```r
> q = c(0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999)
> q
[1] 0.001 0.010 0.100 0.500 0.900 0.990 0.999
> p = pged(q)
> p
[1] 0.50040 0.50399 0.53983 0.69146 0.81594 0.83891 0.84110
```
We want to test the three Swiss Pension Fund Indices if they are normal distributed. These are Pictet’s so called LPP indices named LPP25, LPP40, and LPP60. The numbers reflect the amount of equities included, thus the indices reflect benchmarks with increasing risk levels.

The data set is downloadable from the r-forge web site as a semicolon separated csv file. The file has 10 columns, the first holds the dates, the next 6 index data of bond, reit and stock indices, and the last three the Swiss pension fund index benchmarks.

Download the data and select columns 2 to 4

```r
> library(fEcofin)
> data(SWXLP)
> LPP.INDEX <- SWXLP[, 5:7]
> head(LPP.INDEX)

     LP25  LP40  LP60
1   99.81 99.71 99.55
2   98.62 97.93 96.98
3   98.26 97.36 96.11
4   98.13 97.20 95.88
5   98.89 98.34 97.53
6   99.19 98.79 98.21
```

Compute daily percentual returns

```r
> LPP = 100 * diff(log(as.matrix(LPP.INDEX)))
```

Create a nice histogram plot which adds a normal distribution fit to the histogram, adds the mean as a vertical Line, and adds rugs to the x-axis. Use nice colors to display the histogram.

```r
> histPlot <- function(x, ...) {
  X = as.vector(x)
  H = hist(x = X, ...)
  box()
  grid()
  abline(h = 0, col = "grey")
  mean = mean(X)
  sd = sd(X)
  xlim = range(H$breaks)
  s = seq(xlim[1], xlim[2], length = 201)
  lines(s, dnorm(s, mean, sd), lwd = 2, col = "brown")
  abline(v = mean, lwd = 2, col = "orange")
  Text = paste("Mean:", signif(mean, 3))
  mtext(Text, side = 4, adj = 0, col = "darkgrey", cex = 0.7)
  rug(X, ticksize = 0.01, quiet = TRUE)
  invisible(s)
}
```
Plot the three histograms

```r
> par(mfrow = c(2, 2))
> main = colnames(LPP)
> for (i in 1:3) histPlot(LPP[, i], main = main[i], col = "steelblue",
> border = "white", nclass = 25, freq = FALSE, xlab = "Returns")
```

Parameter estimation

Fit the parameters to a GED for the three LPP benchmark series

```r
> param = NULL
> for (i in 1:3) param = rbind(param, gedFit(LPP[, i])$par)
> rownames(param) = colnames(LPP)
> param

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP25</td>
<td>0.023525</td>
<td>0.25266</td>
<td>1.1693</td>
</tr>
<tr>
<td>LP40</td>
<td>0.032626</td>
<td>0.39439</td>
<td>1.1178</td>
</tr>
<tr>
<td>LP60</td>
<td>0.040193</td>
<td>0.59533</td>
<td>1.1053</td>
</tr>
</tbody>
</table>
```
FIGURE 21.3: LPP Histogram Plots with fitted Normal (brown) and GED (green). Note that all three histogram plots are on the same scale.

Overlay the histograms with a fitted GED

```r
> par(mfrow = c(2, 2))
> main = colnames(LPP)
> for (i in 1:3) {
    u = histPlot(LPP[, i], main = main[i], col = "steelblue",
                border = "white", nclass = 25, freq = FALSE, xlab = "Returns")
    v = dged(u, mean = param[i, 1], sd = param[i, 2], nu = param[i, 3])
    lines(u, v, col = "darkgreen", lwd = 2)
}
```

21.4 Exercises

Rewrite the functions dged() as in the case of dnorm()

```r
> args(dnorm)
```
function (x, mean = 0, sd = 1, log = FALSE)
NULL

with an additional argument of log. Use this function for the estimation of the distributional parameters in the function gedFit().

Rewrite the functions pged() and qged() as in the case of pnorm() and qnorm()

> args(pnorm)
function (q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
NULL

> args(qnorm)
function (p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
NULL

with additional arguments of lower.tail and log.p.
The arguments log and log.p are logical values, if TRUE probabilities p are given as \(\log(p) \). lower.tail is a logical value; if TRUE, probabilities are \(P[X \leq x] \), otherwise, \(P[X > x] \).
CHAPTER 22

SKEWED RETURN DISTRIBUTIONS

22.1 ASSIGNMENT

Fernandez and Steel 1996, showed a general method to transform an unimodal symmetric distribution into a skew symmetric distribution. Use this approach and write function for the density, probabilities and quantiles for the skew Normal distribution.

References

Fernandez and Steel, 1996, On Bayesian Modeling of Fat Tails and Skewness, Tilburg University, Center for Economic Research, Discussion Paper Series Number 1996-58

22.2 R IMPLEMENTATION

Consider a univariate pdf $f(\cdot)$ which is unimodal and symmetric around 0. Fernandez and Stell then generates the following class of skewed distributions

$$p(\varepsilon|\gamma) = \frac{2}{\gamma + \frac{1}{\gamma}} \left\{ f\left(\frac{\varepsilon}{\gamma} \right) I_{[0,\infty]}(\varepsilon) + f(\gamma \varepsilon) I_{(-\infty,0]}(\varepsilon) \right\}$$

(22.1)

Their basic idea is the introduction of inverse scale factors in the positive and negative orthant.

Skewed normal density

First we write a function for the standardized skew density function with mean zero and unit variance, named \texttt{dsnorm()}
Skewed Return Distributions

> .dsnorm <- function(x, lambda)
> {
> # Standardize x:
> absMoment = 2/sqrt(2*pi)
> mu = absMoment * (lambda - 1/lambda)
> sigma <- sqrt((1-absMoment^2)*(lambda^2+1/lambda^2) + 2*absMoment^2 - 1)
> z <- x*sigma + mu
>
> # Compute Density:
> Lambda <- lambda^sign(z)
> g <- 2 / (lambda + 1/lambda)
> Density <- g * sigma * dnorm(x = z/Lambda)
>
> # Return Value:
> Density
> }

Then we generalize the density function for arbitrary mean and variance

> dsnorm <- function(x, mean = 0, sd = 1, lambda = 1)
> {
> # Shift and Scale:
> Density <- .dsnorm(x = (x-mean)/sd, lambda = lambda) / sd
>
> # Return Value:
> Density
> }

Skewed normal probability

Here are the functions for the probabilities

> .psnorm <- function(q, lambda)
> {
> # Standardize x:
> absMoment <- 2/sqrt(2*pi)
> mu <- absMoment * (lambda - 1/lambda)
> sigma <- sqrt((1-absMoment^2)*(lambda^2+1/lambda^2) + 2*absMoment^2 - 1)
> z <- q*sigma + mu
>
> # Compute Probabilities:
> Lambda <- lambda^sign(z)
> g <- 2 / (lambda + 1/lambda)
> Probabilities <- Heaviside(z) - sign(z)* g * Lambda * pnorm(q = -abs(z)/Lambda)
>
> # Return Value:
> Probabilities
> }

where Heaviside() implements the Heaviside function

> Heaviside <- function(x, a = 0)
> {
> # Compute Heaviside Function:
> heaviside <- (sign(x-a) + 1)/2
> }
22.3. Examples

Plot the skew normal density for the following values of $\lambda = \{1, 1.5, 2\}$

```r
> lambda <- c(1, 1.5, 2)
> L = length(lambda)
> x <- seq(-5, 5, length = 501)
> for (i in 1:L) {
    Density = dsnorm(x, mean = 0, sd = 1, lambda = lambda[i])
    if (i == 1)
        plot(x, Density, type = "l", col = i, ylim = c(0, 0.5))
    else lines(x, Density, col = i)
}
> title(main = "Density")
> grid()
> for (i in 1:L) {
    Probability = psnorm(x, mean = 0, sd = 1, lambda = lambda[i])
    if (i == 1)
        plot(x, Probability, type = "l", col = i)
    else lines(x, Probability, col = i)
    grid()
}
> title(main = "Probability")
> grid()
> lambda <- 1/lambda
> for (i in 1:L) {
    Density = dsnorm(x, mean = 0, sd = 1, lambda = lambda[i])
    if (i == 1)
        plot(x, Density, type = "l", col = i, ylim = c(0, 0.5))
    else lines(x, Density, col = i)
    grid()
}
> title(main = "Density")
> grid()
> for (i in 1:length(lambda)) {
    Probability = psnorm(x, mean = 0, sd = 1, lambda = lambda[i])
    if (i == 1)
        plot(x, Probability, type = "l", col = i)
    else lines(x, Probability, col = i)
    grid()
}
> title(main = "Probability")
> grid()
```
22.4 Exercise

1. Write a function `qsnorm()` which computes the quantile function of the skew normal distribution.

2. Write a function `snormFit()` which estimates the distributional parameters using the maximum log-likelihood approach.
CHAPTER 23

JARQUE-BERA HYPOTHESIS TEST

23.1 ASSIGNMENT

Write a R function for the Jarque-Bera Test to test the hypothesis if a series of financial returns is normally distributed or not. The Jarque-Bera test is a goodness-of-fit measure of departure from normality, based on the sample kurtosis and skewness, Jarque and Bera, 1980. The test statistic JB is defined as

$$JB = \frac{n}{6} \left(S^2 + \frac{1}{4} K^2 \right)$$

where n is the number of observations, S is the sample skewness

$$S = \frac{\hat{\mu}_3}{\hat{\sigma}^3} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^{3/2}$$

and K is the sample kurtosis:

$$K = \frac{\hat{\mu}_4}{\hat{\sigma}^4} - 3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^2 - 3$$

Here $\hat{\mu}_3$ and $\hat{\mu}_4$ are the estimates of third and fourth central moments, respectively, \bar{x} is the sample mean, and $\hat{\sigma}^2$ is the estimate of the second central moment, the variance. The statistic JB has an asymptotic chi-square distribution with two degrees of freedom and can be used to test the null hypothesis that the data are from a normal distribution. The null hypothesis is a joint hypothesis of the skewness being zero and the excess kurtosis being 0. As the definition of JB shows, any deviation from this increases the JB statistic, Wikipedia 2009.
References

Carlos M. Jarque and Anil K. Bera, 1980,
Efficient Tests for Normality, Homoskedasticity and Serial Independence
of Regression Residuals,
Economics Letters 6, 255-259

Wikipedia, Jarque-Bera Test, 2010,

23.2 R Implementation

The following R function performs the Jarque-Bera test, to test if a vector of
financial returns is normally distributed. The function takes as argument
x the vector of returns, and returns an object of class "htest".

```R
> jarque.bera.test <- function (x)
  {
    # Borrowed from the contributed R package tseries
    # Author: Adrian Trapletti

    # Assign a Name to the Data Vector:
    DNAME <- deparse(substitute(x))

    # Compute Statistics:
    n <- length(x)
    m1 <- sum(x)/n
    m2 <- sum((x - m1)^2)/n
    m3 <- sum((x - m1)^3)/n
    m4 <- sum((x - m1)^4)/n
    b1 <- (m3/m2^(3/2))^2
    b2 <- (m4/m2^2)
    STATISTIC <- n* b1/6 + n * (b2 - 3)^2/24
    names(STATISTIC) <- "X-squared"

    # Set the Number of Degrees of Freedom:
    PARAMETER <- 2
    names(PARAMETER) <- "df"

    # Compute the p-Value:
    PVAL <- 1 - pchisq(STATISTIC, df = 2)

    # Return Value:
    structure(list(
      statistic = STATISTIC,
      parameter = PARAMETER,
      p.value = PVAL,
      method = "Jarque Bera Test",
      data.name = DNAME),
      class = "htest")
  }
```
23.3. **Examples**

We want to test Swiss market indices if they are normal distributed. These are the Swiss Bond Index, SBI, the Swiss REIT Index, SII, and the Swiss Performance Index, SPI.

The data set is downloadable from the r-forge web site as a semicolon separated csv file. The file has 7 columns, the first holds the dates, the next 3 the SBI, SII, and SPI indices, and the last three Swiss pension fund index benchmarks.

Download the data and select columns 2 to 4

```r
> library(fEcofin)
> data(SWXLP)
> x <- SWXLP[, 2:4]
> head(x)

   SBI  SPI  SII
1  95.88 5022.9 146.26
2  95.68 4853.1 146.27
3  95.67 4802.8 145.54
4  95.54 4861.4 146.10
5  95.58 4971.8 146.01
6  95.58 4982.3 146.36
```

Compute daily percentual returns

```r
> x = diff(log(100 * as.matrix(x)))
```

and compute the tests statistic and p-values

```r
> jarque.bera.test(x[, "SBI"])

Jarque Bera Test

data:  x[, "SBI"]
X-squared = 216.23, df = 2, p-value < 2.2e-16

> jarque.bera.test(x[, "SII"])

Jarque Bera Test

data:  x[, "SII"]
X-squared = 541.07, df = 2, p-value < 2.2e-16

> jarque.bera.test(x[, "SPI"])

Jarque Bera Test

data:  x[, "SPI"]
X-squared = 2192.7, df = 2, p-value < 2.2e-16
```

The X-squared statistic shows large increasing values for the three indices with a vanishing p-value. So the SBI, SII, and SPI show strong deviations from normality with increasing strength, as we would expect. All three series are rejected to be normal distributed. Let us have a look on the quantile-quantile plot which confirms these results.
> qqPlot = function(x) {
 qnorm(x, pch = 19, col = "steelblue", cex = 0.7)
 qqline(x)
 grid()
}
> qqPlot(x[, "SBI"])
> qqPlot(x[, "SII"])
> qqPlot(x[, "SPI"])
CHAPTER 24

PCA ORDERING OF ASSETS

24.1 ASSIGNMENT

In this case study we will use the Principal Component Analysis, PCA, to order the individual instruments in a set of financial assets.

References

Joe H. Ward, 1963,
Hierarchical Grouping to Optimize an Objective Function,
Journal of the American Statistical Ass. 58, 236–244

Trevor Hastie, Robert Tibshirani, and Jerome Friedman, 2009,
The Elements of Statistical Learning,
Chapter: 14.3.12 Hierarchical clustering,
ISBN 0-387-84857-6, New York, Springer, 520Â–528,

Wikipedia, Hierarchical Clustering, 2010,

24.2 R IMPLEMENTATION

We proceed as follows: 1 transform the input in a numeric data matrix where the columns are the instruments, and the rows are the records in time, 2 compute the correlation matrix, 3 compute eigenvectors and eigenvalues of the correlation matrix, 4 and finally order the instruments

```r
> arrangeAssets <- function(x, ...) {
  # Arguments:
  # x - the set of assets, usually a multivariate time series
```

229
230 PCA ORDERING OF ASSETS

1 Transform x Into a Matrix Object:
x = as.matrix(x)

2 Compute Correlation Matrix:
x.cor = cor(x, ...)

3 Compute Einvectors and Eigenvalues:
x.eigen = eigen(x.cor)$vectors[, 1:2]
e1 = x.eigen[, 1]
e2 = x.eigen[, 2]

4 Finally Order the Assets:
Order = order(ifelse(e1 > 0, atan(e2/e1), atan(e2/e1)+pi))
ans = colnames(as.matrix(x))[Order]

Return Value:
ans

To display the similarities graphically we write the following plot function for the ratio of eigenvalues

g > similarityPlot <- function(x, ...) {

 # Order Assets:
x.cor = cor(as.matrix(x), ...)
x.eig = eigen(x.cor)$vectors[, 1:2]
e1 = x.eig[, 1]
e2 = x.eig[, 2]

 # Plot Ordered Assets:
plot(e1, e2, col = 'white', ann = FALSE,
 xlim = range(e1, e2), ylim = range(e1, e2))
abline(h = 0, lty = 3, col = "grey")
abline(v = 0, lty = 3, col = "grey")
arrows(0, 0, e1, e2, cex = 0.5, col = "steelblue", length = 0.1)
text(e1, e2, rownames(x.cor))
title(main = "Eigenvalue Ratio Plot", sub = "",
xlab = "Eigenvalue 1", ylab = "Eigenvalue 2")

 # Return Value:
invisible()
}

24.3 EXAMPLES

Load the Swiss Pension Fund benchmark data set available from the (fBasics) package.

g > require(fBasics)
g > assets = 100 * LPP2005REC[, 1:6]
g > head(round(assets, 5), 20)
GMT
The loaded data series is a (timeSeries) object with 377 daily records

Here we have extracted the instruments from column 1 to 6. The series have been multiplied by 100 to observe percentaged returns. Let us order the instruments

yielding

Then display the similarities of the instruments in an eigenvalue-ratio plot
Figure 24.1: Similarity Plot of Swiss Pension Fund Benchmark
CHAPTER 25

CLUSTERING OF ASSET RETURNS

25.1 ASSIGNMENT

In statistics, hierarchical clustering is a method of cluster analysis that computes a hierarchy of clusters. We can use this approach to identify groups of assets in a portfolio and to arrange them in a hierarchical way. These hierarchical clusters are usually presented in a dendrogram, which is a tree-like structure.

Use the R’s base function hclust() to investigate the hierarchical grouping of the assets and benchmarks from the Swiss pension fund series.

References

Joe H. Ward, 1963
Hierarchical Grouping to Optimize an Objective Function,
Journal of the American Statistical Association58, 236–244

Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
The Elements of Statistical Learning,
Chapter: 14.3.12 Hierarchical clustering,

Wikipedia, Hierarchical Clustering, 2010,

25.2 R IMPLEMENTATION

Let us write a function clusteredAssets() which takes a multivariate time series or a matrix of financial returns as input, and clusters them
hierarchically. We use R’s base functions `t()`, `dist()` and `hclust()` to perform this task.
Given a matrix or data frame `x`, then the `t()`

```r
> args(t)
function (x)
NULL
```

returns the transpose of `x`.

The function `dist()`

```r
> args(dist)
function (x, method = "euclidean", diag = FALSE, upper = FALSE,
p = 2)
NULL
```

computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix. The distance measure to be used must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". `dist()` returns an object of class "dist".

The function `hclust()`

```r
> args(hclust)
function (d, method = "complete", members = NULL)
NULL
```

does a hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it. The help page states: "Initially, each object is assigned to its own cluster and then the algorithm proceeds iteratively, at each stage joining the two most similar clusters, continuing until there is just a single cluster. At each stage distances between clusters are recomputed by the Lance-Williams dissimilarity update formula according to the particular clustering method being used." The agglomeration method to be used is one of "ward", "single", "complete", "average", "mcquitty", "median" or "centroid". The function returns an object of class "hclust" for which a plot method is available

```r
> clusteredAssets <- function(x, dist = "euclidean", method = "complete") {
  x = as.matrix(x)
  dist = dist(t(x), method = dist)
  clustering = hclust(dist, method = method)
  clustering
}
```

Like the function `hclust()` the function `clusteredAssets()` returns an object of class "hclust".
25.3 **Examples**

In this example we group hierarchically the 6 asset classes and the three benchmark series from the Swiss pension fund benchmark series. The data set is downloadable from the r-forge web site as a semicolon separated csv file. The file has 10 columns, the first holds the dates, the next 6 the assets, and the last three the benchmarks.

```r
> require(fEcofin)
> require(timeSeries)
> x = as.timeSeries(LPP2005REC)
> names(x)
[1] "SBI"  "SPI"  "SII"  "LMI"  "MPI"  "ALT"  "LPP25" "LPP40" "LPP60"
```

Then we group the return series using the default settings: the "euclidean" distance measure, and the "complete" linkage method.

Show the distance matrix obtained from the financial return series

```r
> dist(t(x))
      SBI SPI SII LMI MPI ALT LPP25 LPP40
SPI 0.154286
SII 0.060705 0.151784
LMI 0.020588 0.154386 0.060881
MPI 0.148463 0.105689 0.146625 0.150137
ALT 0.118405 0.108128 0.119690 0.119379 0.069716
LPP25 0.038325 0.122376 0.058179 0.040201 0.112964 0.084995
LPP40 0.059894 0.107120 0.070894 0.061389 0.092023 0.065881 0.022207
LPP60 0.088714 0.089892 0.092814 0.089874 0.066113 0.046772 0.051229 0.029056
```

and then compute the clusters

```r
> clusters = clusteredAssets(x)
> clusters
Call:
  hclust(d = dist, method = method)

  Cluster method: complete
  Distance: euclidean
  Number of objects: 9
```

The result of the hierarchical clustering is shown in the dendrogram plot.

```r
> plot(clusters)
```

25.4 **Exercises**

Compare the dendrogram as returned from alternative distance measures and linkage methods with the one obtained with the default settings, dist="euclidean" and method="complete".

Cluster Dendrogram

![Cluster Dendrogram](image)

Figure 25.1: LPP Dendrogram Plot.
PART VII

CASE STUDIES: OPTION VALUATION
CHAPTER 26

BLACK SCHOLES OPTION PRICE

26.1 ASSIGNMENT

Black and Scholes succeeded in solving their differential equation to obtain exact formulas for the prices of European call and put options. The expected value of an European call option at maturity in a risk neutral world is

\[E[max(0, S_T - X)] \]

where \(E \) denotes the expected value, \(S_T \) the price of the underlying at maturity, and \(X \) the strike price.

The Black and Scholes formula

The price of a European call option \(c \) at time \(t \) is the discounted value at the risk free rate of interest \(r \), that is,

\[c = e^{-r(T-t)}E[max(0, S_T - X)] \]

\(\ln S_T \) has the probability distribution

\[\ln S_T - \ln S \sim \mathcal{N} \left((u - \frac{1}{2}\sigma^2)(T-t), \sigma(T-t)^{1/2} \right) \]

Evaluating the expectation value \(E[max(0, S_T - X)] \) is an application of integral calculus, yielding

\[
\begin{align*}
 c &= S_T \mathcal{N}(d_1) - X e^{-r(T-t)} \mathcal{N}(d_2) \\
 d_1 &= \frac{\ln S_T + (r + \sigma^2/2)(T-t)}{\sigma(T-t)^{1/2}} \\
 d_2 &= \frac{\ln S_T + (r - \sigma^2/2)(T-t)}{\sigma(T-t)^{1/2}} = d_1 - \sigma(T-t)^{1/2}
\end{align*}
\]

(26.1)
and \mathcal{N} is the cumulative distribution function for a standardized normal variable. The value of an European put can be calculated in a similar way, the result is

$$p = X e^{-r(T-t)}N(-d_2) - SN(-d_1).$$

The formula can be used as the starting point to price several kinds of options including European options on a stock with cash dividends, options on stock indexes, options on futures, and currency options.

The generalized Black and Scholes formula

The general version of the Black-Scholes model incorporates the cost-of-carry term b. It can be used to price European options on stocks, stocks paying a continuous dividend yield, options on futures, and currency options.

$$c_{GBS} = S e^{(b-r)T}N(d_1) - X e^{-rT}N(d_2),$$

$$p_{GBS} = X e^{-rT}N(-d_2) - S e^{(b-r)T}N(-d_1),$$

where

$$d_1 = \frac{\ln(S/X) + (b + \sigma^2/2)T}{\sigma \sqrt{T}},$$

$$d_2 = \frac{\ln(S/X) + (b - \sigma^2/2)T}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T}. \quad (26.3)$$

and b is the cost-of-carry rate of holding the underlying security.

- $b = r$ gives the Black-Scholes (1972) stock option model,
- $b = r - q$ gives the Merton (1973) stock option model with continuous dividend yield q,
- $b = 0$ gives the Black (1976) futures option model, and
- $b = r - r_f$ gives the Garman and Kohlhagen (1983) currency option model.

References

Black Fischer and Myron Scholes, 1973,
The Pricing of Options and Corporate Liabilities,
Journal of Political Economy 81, 637–654

Robert C. Merton, 1973,
Theory of Rational Option Pricing,
26.2. R IMPLEMENTATION

Let us write a function `BlackScholes()` to compute the call and put price of the Black Scholes option. The arguments for the function are the call/put `TypeFlag`, the price of the underlying `S`, the strike price `X`, the time to maturity `Time`, the interest rate `r`, the cost of carry term `b`, and the volatility.

```r
> BlackScholes <- function(TypeFlag=c("c", "p"), S, X, Time, r, b, sigma) {
  # Check Type Flag:
  TypeFlag = TypeFlag[1]

  # Compute d1 and d2:
  d1 = (log(S/X) + (b+sigma*sigma/2)*Time) / (sigma*sqrt(Time))
  d2 = d1 - sigma*sqrt(Time)

  # Compute Option Price:
  if (TypeFlag == "c")
    price = S*exp((b-r)*Time)*pnorm(d1) - X*exp(-r*Time)*pnorm(d2)
  else if (TypeFlag == "p")
    price = X*exp(-r*Time)*pnorm(-d2) - S*exp((b-r)*Time)*pnorm(-d1)

  # Save Parameters:
  param <- list(TypeFlag=TypeFlag, S=S, X=X, Time=Time, r=r, b=b, sigma=sigma)
  ans <- list(parameters=param, price=price, option = "Black Scholes")
  class(ans) <- c("option", "list")

  # Return Value:
  ans
}
```

The function returns a list with three entries, the `$parameters`, the `$price`, and the name of the `$option`.

To return the result returned from the list object in a nicely printed form we write a S3 print method.

```r
> print.option <- function(x, ...) {
  # Parameters:
  cat("\nOption:\n ")
  cat(x$option, "\n\n")
```
26.3 Examples

European options on a stock with cash dividends

Consider an European call option on a stock that will pay out a dividend of two, three and six months from now. The current stock price is 100, the strike is 90, the time to maturity on the option is 9 months, the risk free rate is 10% and the volatility is 25%. First calculate the stock price minus the present value of the value of the cash dividends and then use the Black-Scholes formula to calculate the call price. The result will be 15.6465, as returned from the @price slot.

```r
> S = 100 - 2 * exp(-0.1 * 0.25) - 2 * exp(-0.1 * 0.5)
> r = 0.1
> BlackScholes("c", S = S, X = 90, Time = 0.75, r = r, b = r, sigma = 0.25)

Option:
Black Scholes

Parameters:
  Value:
    TypeFlag c
    S  96.146921326942
    X  90
    Time 0.75
    r 0.1
    b 0.1
    sigma 0.25

Option Price:
15.647
```
26.3. Examples

Options on stock indexes

Consider an European put option with 6 months to expiry. The stock index is 100, the strike price is 95, the risk-free interest rate is 10%, the dividend yield is 5% per annum, and the volatility is 25%. The result for the put price will be 2.4648:

```r
> r = 0.1
> q = 0.05
> BlackScholes("p", S = 100, X = 95, Time = 0.5, r = r, b = r - q, sigma = 0.2)
Option:
Black Scholes
Parameters:
  Value:
  TypeFlag p
  S  100
  X  95
  Time 0.5
  r 0.1
  b 0.05
  sigma 0.2
Option Price:
2.4648
```

Options on futures

Consider an European Option on the brent blend futures with nine months to expiry. The futures price USD 19, the risk-free interest rate is 10%, and the volatility is 28%. The result for the call price will be 1.7011 and the price for the put will be the same:

```r
> FuturesPrice = 19
> b = 0
> BlackScholes("c", S = FuturesPrice, X = 19, Time = 0.75, r = 0.1, 
  b = b, sigma = 0.28)
Option:
Black Scholes
Parameters:
  Value:
  TypeFlag c
  S  19
  X 19
  Time 0.75
  r 0.1
  b 0
  sigma 0.28
Option Price:
```

```
1.7011

**Currency options**

Consider an European call USD put DEM option with six months to expiry. The USD/DEM exchange rate is 1.5600, the strike price is 1.6000, the domestic risk-free interest rate in Germany is 6%, the foreign risk-free interest rate in the United States is 8% per annum, and the volatility is 12%. The result for the call price will be 0.0291:

```r
> r = 0.06
> rf = 0.08
> BlackScholes("c", S = 1.56, X = 1.6, Time = 0.5, r = r, b = r - rf, sigma = 0.12)

Option:
Black Scholes

Parameters:
Value:
TypeFlag c
S 1.56
X 1.6
Time 0.5
r 0.06
b -0.02
sigma 0.12

Option Price:
0.029099
```
CHAPTER 27

BLACK SCHOLES OPTION GREEKS

27.1 ASSIGNMENT

Recall from the Black-Scholes formula in the previous case study that the price of an option depends upon just five variables

- the current asset price,
- the strike price,
- the time to maturity,
- the volatility, and
- the interest rate.

One of these, the strike price, is normally fixed in advance and therefore does not change. That leaves the remaining four variables. We can now define four quantities, each of which measures how the value of an option will change when one of the input variables changes while the others remain the same.

**Delta**

Delta means the sensitivity of the option price to the movement in the underlying asset.

\[
\Delta_{\text{call}} = \frac{\partial c}{\partial S} = e^{(b-r)T} N(d_1) > 0 \\
\Delta_{\text{put}} = \frac{\partial p}{\partial S} = e^{(b-r)T} [N(d_1) - 1] < 0
\]
**Theta**

Theta is the options sensitivity to small change in time to maturity. As time to maturity decreases, it is normal to express the Theta as minus the partial derivative with respect to time.

\[
\Theta_{call} = \frac{\partial c}{\partial T} = - \frac{Se^{(b-r)T} n(d_1)\sigma}{2\sqrt{T}} - (b-r)Se^{(b-r)T}N(d_1) - rXe^{-rT}N(d_2)
\]

\[
\Theta_{put} = \frac{\partial p}{\partial T} = - \frac{Se^{(b-r)T} n(d_1)\sigma}{2\sqrt{T}} + (b-r)Se^{(b-r)T}N(-d_1) - rXe^{-rT}N(-d_2)
\]

**Vega**

The Vega is the option's sensitivity to a small movement in the volatility of the underlying asset. Note that that Vega is equal for call and put options

\[
Vega_{call, put} = \frac{\partial c}{\partial \sigma} = \frac{\partial p}{\partial \sigma} = Se^{(b-r)T}n(d_1)\sqrt{T} > 0
\]

**Rho**

The Rho is the options sensitivity to a small change in the risk-free interest rate. For the call we have

\[
\rho_{call} = \frac{\partial c}{\partial r} = TXe^{-rT}N(d_2) > 0 \text{ if } b \neq 0,
\]

\[
\rho_{call} = \frac{\partial c}{\partial r} = -Tc < 0 \text{ if } b = 0,
\]

and for the put we have

\[
\rho_{put} = \frac{\partial c}{\partial r} = -TXe^{-rT}N(-d_2) < 0 \text{ if } b \neq 0,
\]

\[
\rho_{put} = \frac{\partial c}{\partial r} = -Tp < 0 \text{ if } b = 0.
\]

All four sensitivity measures so far have one thing in common: they all express how much an option's value will change for a unit change in one of the pricing variables. Since they measure changes in premium, Delta, Theta, Vega, and Rho will all be expressed in the same units as the option premium.

**References**

John C. Hull, 1997, Options, Futures, and Other Derivatives, Prentice Hall

27.2 R Implementation

Write functions to compute the Greeks for an option. The function for the call and put price was calculated in the previous example:

```r
> BlackScholes <- function(TypeFlag = c("c", "p"), S, X, Time, r, b, sigma) {
 TypeFlag = TypeFlag[1]
 d1 = (log(S/X) + (b + sigma * sigma/2) * Time)/(sigma * sqrt(Time))
 d2 = d1 - sigma * sqrt(Time)
 if (TypeFlag == "c")
 price = S * exp((b - r) * Time) * pnorm(d1) - X * exp(-r * Time) * pnorm(d2)
 else if (TypeFlag == "p")
 price = X * exp(-r * Time) * pnorm(-d2) - S * exp((b - r) * Time) * pnorm(-d1)
 param <- list(TypeFlag = TypeFlag, S = S, X = X, Time = Time,
 r = r, b = b, sigma = sigma)
 ans <- list(parameters = param, price = price, option = "Black Scholes")
 class(ans) <- c("option", "list")
 ans
}
```

Let us start to implement the function `delta()` from the formula given above.

**Delta**

```r
> delta <- function(TypeFlag, S, X, Time, r, b, sigma) {
 d1 = (log(S/X) + (b + sigma * sigma/2) * Time)/(sigma * sqrt(Time))
 if (TypeFlag == "c")
 delta = exp((b - r) * Time) * pnorm(d1)
 else if (TypeFlag == "p")
 delta = exp((b - r) * Time) * (pnorm(d1) - 1)
 delta
}
```

then the function for `theta()`

**Theta**

```r
> theta <- function(TypeFlag, S, X, Time, r, b, sigma) {
 d1 = (log(S/X) + (b + sigma * sigma/2) * Time)/(sigma * sqrt(Time))
 d2 = d1 - sigma * sqrt(Time)
 NDF <- function(x) exp(-x * x/2)/sqrt(8 * atan(1))
 Theta1 = -(S * exp((b - r) * Time) * NDF(d1) * sigma)/(2 * sqrt(Time))
 if (TypeFlag == "c")
 theta = Theta1 - (b - r) * S * exp((b - r) * Time) * pnorm(+d1) - r * X * exp(-r * Time) * pnorm(+d2)
 else if (TypeFlag == "p")
 theta = Theta1 + (b - r) * S * exp((b - r) * Time) * (pnorm(-d2) - 1)
 theta
}
```
\begin{align*}
\text{theta} &= \text{pnorm}(-d1) + r \times X \times \exp(-r \times \text{Time}) \times \text{pnorm}(-d2) \\
\end{align*}

then the function for vega()

\begin{verbatim}
Vega

> vega <- function(TypeFlag, S, X, Time, r, b, sigma) {
  NDF <- function(x) exp(-x * x/2)/sqrt(8 * atan(1))
  d1 = (log(S/X) + (b + sigma * sigma/2) * Time)/(sigma * sqrt(Time))
  vega = S * exp((b - r) * Time) * NDF(d1) * sqrt(Time)
  vega
}

and finally we implement the function for rho()

\begin{verbatim}
Rho

> rho <- function(TypeFlag, S, X, Time, r, b, sigma) {
  d1 = (log(S/X) + (b + sigma * sigma/2) * Time)/(sigma * sqrt(Time))
  d2 = d1 - sigma * sqrt(Time)
  CallPut = BlackScholes(TypeFlag, S, X, Time, r, b, sigma)$price
  if (TypeFlag == "c")
    if (b != 0)
      rho = Time * X * \exp(-r * \text{Time}) \times \text{pnorm}(d2)
    else rho = -Time * CallPut
  else if (TypeFlag == "p")
    if (b != 0)
      rho = -Time * X * \exp(-r * \text{Time}) \times \text{pnorm}(-d2)
    else rho = -Time * CallPut
  rho
}
\end{verbatim}

27.3 Examples

\begin{verbatim}
Delta

Consider a futures option with six months to expiry. The futures price is 105, the strike price is 100, the risk-free interest rate is 10%, and the volatility is 36%. The Delta of the call price will be 0.5946 and the Delta of the put price \(-0.3566\).

> delta("c", S = 105, X = 100, Time = 0.5, r = 0.1, b = 0, sigma = 0.36)
[1] 0.59463

> delta("p", S = 105, X = 100, Time = 0.5, r = 0.1, b = 0, sigma = 0.36)
[1] -0.3566
\end{verbatim}
27.3. Examples

**Theta**

Consider an European put option on a stock index currently priced at 430. The strike price is 405, time to expiration is one month, the risk-free interest rate is 7% p.a., the dividend yield is 5% p.a., and the volatility is 20% p.a.. The Theta of the put option will be $-31.1924$.

```r
> theta("p", S = 430, X = 405, Time = 1/12, r = 0.07, b = 0.07 - 0.05, sigma = 0.2)
[1] -31.192
```

**Vega**

Consider a stock option with nine months to expiry. The stock price is 55, the strike price is 60, the risk-free interest rate is 10% p.a., and the volatility is 30% p.a.. What is the Vega? The result will be 18.9358.

```r
> vega("c", S = 55, X = 60, Time = 0.75, r = 0.1, b = 0.1, sigma = 0.3)
[1] 18.936
```

**Rho**

Consider an European call option on a stock currently priced at 72. The strike price is 75, time to expiration is one year, the risk-free interest rate is 9% p.a., and the volatility is 19% p.a.. The result for Rho will be 38.7325.

```r
> rho("c", S = 72, X = 75, Time = 1, r = 0.09, b = 0.09, sigma = 0.19)
[1] 38.733
```
CHAPTER 28

AMERICAN CALLS WITH DIVIDENDS

28.1 Assignment

Roll (1977), Geske (19979) and Whaley (1982) have developed a formula for the valuation of an American call option on a stock paying a single dividend of $D$, with time to dividend payout $t$.

\[
C = (S - De^{-rt})N(b_1) +
\]

\[
(S - Dw^{-rt}) M(a_1, -b_1; -\sqrt{\frac{t}{T}}) - X e^{-rt}
\]

\[
M(a_2, -b_2; -\sqrt{\frac{t}{T}}) - (X - D)e^{-rt} N(b_2),
\]

where

\[
a_1 = \frac{\ln[(S - De^{-rt})/X] + (r + \sigma^2/2)T}{\sigma \sqrt{T}}
\]

\[
a_2 = a_1 - \sigma \sqrt{T}
\]

\[
b_1 = \frac{\ln[(S - De^{-rt})/I] + (r + \sigma^2/2)T}{\sigma \sqrt{T}}
\]

\[
b_2 = b_1 - \sigma \sqrt{T}
\]

where $M(a, b; \rho)$ is the cumulative bivariate normal distribution function with upper integral limits $a$ and $b$ and correlation coefficient $\rho$. $I$ is the critical ex-dividend stock price $I$ that solves

\[
c(I, X, T - t) = I + D - X,
\]

where $c(I, X, T - t)$ is the value of the European call with stock price $I$ and time to maturity $T - t$. If $D \leq X(1 - e^{-r(T-t)})$ or $I = \infty$, it will not be optimal.
to exercise the option before expiration, and the price of the American option can be found by using the European Black and Scholes formula where the stock price is replaced with the stock price minus the present value of the dividend payment \( S - D e^{rt} \)

References

R. Geske, 1979,  
A Note on an Analytical Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends,  

R. Roll, 1977,  
An Analytic Valuation Formula for Unprotected American Call Options on Stocks with Known Dividends,  
Journal of Financial Economics 5, 251–258

R. E. Whaley, 1982,  
Valuation of American Call Options on Dividend-Paying Stocks: Empirical Tests,  

E.G. Haug, 1997,  
The Complete Guide to Option Pricing Formulas,  

28.2 R Implementation

The function for the call and put price was calculated in the previous example:

```r
> BlackScholes <- function(TypeFlag, S, X, Time, r, b, sigma)
{
 # Compute d1 and d2:
 d1 = (log(S/X) + (b+sigma*sigma/2)*Time) / (sigma *sqrt(Time))
 d2 = d1 - sigma *sqrt(Time)

 # Compute Option Price:
 if (TypeFlag == "c")
 price = S *exp((b-r)*Time)*pnorm(d1) - X *exp(-r*Time)*pnorm(d2)
 else if (TypeFlag == "p")
 price = X *exp(-r*Time)*pnorm(-d2) - S *exp((b-r)*Time)*pnorm(-d1)

 # Return Value:
 price
}
```
We also need an R function for the cumulative bivariate normal distribution. We implement the following approximation from Abramowitz Stegun and used in Haug (1997)

\[
> \text{CBND <- function (a, b, rho)} \\
\{ \\
    # Cumulative Bivariate Normal distribution: \\
    \text{if (abs(rho) == 1) rho = rho - (1e-12) * sign(rho)} \\
    \text{X = c(0.24840615, 0.39233107, 0.21141819, 0.03324666, 0.0008245334)} \\
    \text{y = c(0.10024215, 0.48281397, 1.0609498, 1.7797294, 2.6697604)} \\
    \text{a1 = a/sqrt(2 + (1 - rho^2))} \\
    \text{b1 = b/sqrt(2 + (1 - rho^2))} \\
    \text{if (a <= 0 && b <= 0 && rho <= 0)} \\
        \text{Sum1 = 0} \\
        \text{for (I in 1:5)} \\
            \text{for (j in 1:5)} \\
                \text{Sum1 = Sum1 + X[I] * X[j] * exp(a1 * (2 * y[I] - a1) + b1 * (2 * y[j] - b1) + 2 * rho * (y[I] - a1) * (y[j] - b1))} \\
        \text{result = sqrt(1 - rho^2)/pi * Sum1} \\
        \text{return(result)} \\
    \text{if (a <= 0 && b >= 0 && rho >= 0)} \\
        \text{result = pnorm(a) - CBND(a, -b, -rho)} \\
        \text{return(result)} \\
    \text{if (a >= 0 && b <= 0 && rho >= 0)} \\
        \text{result = pnorm(b) - CBND(-a, b, -rho)} \\
        \text{return(result)} \\
    \text{if (a >= 0 && b >= 0 && rho <= 0)} \\
        \text{result = pnorm(a) + pnorm(b) - 1 + CBND(-a, -b, rho)} \\
        \text{return(result)} \\
    \text{if (a * b * rho >= 0)} \\
        \text{rho1 = (rho + a - b) * sign(a)/sqrt(a^2 - 2 * rho + a + b + b^2)} \\
        \text{rho2 = (rho + b - a) * sign(b)/sqrt(a^2 - 2 * rho + a + b + b^2)} \\
        \text{delta = (1 - sign(a) * sign(b))/4} \\
        \text{result = CBND(a, 0, rho1) + CBND(b, 0, rho2) - delta} \\
        \text{return(result)} \\
    \text{invisible()} \\
\} \\
\]

Now we are ready to write an R function for the American Call approximation

\[
> \text{RollGeskeWhaley <- function(S, X, time1, Time2, r, D, sigma)} \\
\{ \\
    \text{# Tolerance Settings:} \\
    \text{big = 1.0e+8} \\
    \text{eps = 1.0e-5} \\
    \text{# Compute Option Price:} \\
    \text{Sx = S - D * exp(-r * time1)} \\
    \text{if(D <= X * (1 - exp(-r*(Time2-time1))))} \\
        \text{result = BlackScholes("c", Sx, X, Time2, r, b=r, sigma)} \\
        \text{cat("\nWarning: Not optimal to exercise\n")} \\
        \text{return(result)} \\
    \text{ci = BlackScholes("c", S, X, Time2-time1, r, b=r, sigma)} \\
\} \\
\]
HighS = S 
while ( ci-HighS-D+X > 0 && HighS < big ) {
    HighS = HighS * 2
    ci = BlackScholes("c", HighS, X, Time2-time1, r, b=r, sigma) 
}
if(HighS < big) {
    result = BlackScholes("c", Sx, X, Time2, r, b=r, sigma)
    stop()
}
LowS = 0
I = HighS * 0.5
ci = BlackScholes("c", I, X, Time2-time1, r, b=r, sigma)

# Search algorithm to find the critical stock price I
while ( abs(ci-I-D+X) > eps && HighS - LowS > eps ) {
    if(ci-I-D+X < 0 ) HighS = I else LowS = I
    I = (HighS + LowS) / 2
    ci = BlackScholes("c", I, X, Time2-time1, r, b=r, sigma) 
}
a1 = (log(Sx/X) + (r+sigma^2/2)*Time2) / (sigma*sqrt(Time2))
a2 = a1 - sigma*sqrt(Time2)
b1 = (log(Sx/I) + (r+sigma^2/2)*time1) / (sigma*sqrt(time1))
b2 = b1 - sigma*sqrt(time1)
result = Sx*pnorm(b1) + Sx*CBND(a1,-b1,-sqrt(time1/Time2)) -
X*exp(-r*Time2)*CBND(a2,-b2,-sqrt(time1/Time2)) -
(X-D)*exp(-r*time1)*pnorm(b2)

# Return Value:
result
}

28.3 Examples

Consider an American-style call option on a stock that will pay a dividend of 4 in exactly three months. The stock price is 80, the strike price is 82, time to maturity is four months, the risk-free interest rate is 6%, and the volatility is 30%.

> RollGeskeWhaley(S = 80, X = 82, time1 = 1/4, Time2 = 1/3, r = 0.06, D = 4, sigma = 0.3)

[1] 4.386

The result is 4.386, whereas the value of a similar European call would be 3.5107.
CHAPTER 29

MONTE CARLO OPTION PRICING

29.1 Assignment

Let us write a simple Monte Carlo Simulator for estimating the price of a path dependent option. As an example and exercise we consider the Black and Scholes option to test the code and and the Asian Option as a path dependent option.

The simulator should be so general that we can allow for any random path and for any option payoff to be specified by the user through a function call.

References

P. Glasserman, 2004,

29.2 R Implementation

Let us implement a function to estimate the price of an option by Monte Carlo simulation. We assume that we have already R functions to generate the price path path.gen() and to compute the payoff of the option payoff.calc(). These two function will become arguments of the simulator function. The Simulator requires as inputs the length of the time interval on the path, delta.t, the length of the path, pathLength, and the number of Monte Carlo steps, mcSteps, per Monte Carlo Loop, mcLoops. The total number of Monte Carlo steps is then given by mcSteps*mcLoops.

To make life easier we define the options parameters globally, these are for the Black and Scholes option: the TypeFlag, the price of the underlying S, the strike price X, the time to maturity Time, the interest rate r, the cost of carry term b, anbd the volatility sigma.
The simulator loops over the number of Monte Carlo loops, `mcLoops`, and simulates then in each loop `mcSteps` Monte Carlo steps. For this, first we generate the random innovations, second we calculate for each path the option price, and third we trace the simulation to display the result. The result will be stored and returned in the variable `iteration`.

```r
> MonteCarloOption <- function(
 delta.t, pathLength, mcSteps, mcLoops, path.gen, payoff.calc)
{
 # Arguments:
 # delta.t - The length of the time interval, by default one day
 # pathLength - Number of Time Intervals which add up to the path
 # mcSteps - The number of Monte Carlo Steps performed in one loop
 # mcLoops - The number of Monte Carlo Loops
 # path.gen - the generator for the MC paths
 # payoff.calc - the payoff calculator function

 # Monte Carlo Simulation:
 delta.t <<- delta.t
 cat("Monte Carlo Simulation Path:\n\n")
 iteration = rep(0, length = mcLoops)

 for (i in 1:mcLoops) {
 if (i > 1) init = FALSE
 # 1 Generate Random Innovations:
 eps = matrix(rnorm(mcSteps*pathLength), nrow=mcSteps)
 # 2 Calculate for each path the option price:
 path = t(path.gen(eps))
 payoff = NULL
 for (j in 1:dim(path)[1])
 payoff = c(payoff, payoff.calc(path[, j]))
 iteration[i] = mean(payoff)
 # 3 Trace the Simulation:
 cat("Loop:\t", i, "\t:", iteration[i], sum(iteration)/i)
 }
 cat("\n")

 # Return Value:
 iteration
}
```

29.3  Examples

Now let us perform a Monte Carlo simulation. To test our simulator we run the Black and Scholes Call Option for which we know the exact result in the continuum time where the length of the time interval `delta.t` vanishes.
Path generation

First we have to write an R function which generates the option's price paths. For the Black and Scholes model this is just a Wiener path.

```r
> wienerPath <- function(eps)
 {
 # Generate the Paths:
 path = (b-sigma*sigma/2)*delta.t + sigma*sqrt(delta.t)*eps
 # Return Value:
 path
 }
```

Payoff calculator

First we have to write an R function which computes the option's payoff. For the Black and Scholes model this is payoff we have implemented in the previous examples into the BlackScholes() function.

```r
> plainVanillaPayoff <- function(path)
 {
 # Compute the Call/Put Payoff Value:
 ST = S*exp(sum(path))
 if (TypeFlag == "c") payoff = exp(-r*Time)*max(ST-X, 0)
 else if (TypeFlag == "p") payoff = exp(-r*Time)*max(0, X-ST)
 # Return Value:
 payoff
 }
```

Simulate

Now we are ready to estimate the option's price by Monte Carlo simulation. Define the parameters globally

```r
> TypeFlag <<- "c"
> S <<- 100
> X <<- 100
> Time <<- 1/12
> sigma <<- 0.4
> r <<- 0.1
> b <<- 0.1
```

and then start to simulate

```r
> set.seed = 4711
> mc = MonteCarloOption(delta.t = 1/360, pathLength = 30, mcSteps = 5000,
 mcLoops = 20, path.gen = wienerPath, payoff.calc = plainVanillaPayoff)

Monte Carlo Simulation Path:

Loop: No
Loop: 1 : 7.8775 7.8775
Loop: 2 : 3.9575 5.9175
Loop: 3 : 3.5745 5.1365
Loop: 4 : 5.4086 5.2045
Loop: 5 : 4.9063 5.1449
Loop: 6 : 5.0489 5.1289
Loop: 7 : 5.1139 5.1267
Loop: 8 : 5.3045 5.149
Loop: 9 : 2.9363 4.9031
Loop: 10 : 3.7013 4.7829
Loop: 11 : 5.5370 4.8515
Loop: 12 : 6.8263 5.016
Loop: 13 : 4.1547 4.9491
Loop: 14 : 4.4251 4.9117
Loop: 15 : 3.4020 4.811
Loop: 16 : 5.8018 4.873
Loop: 17 : 4.02 4.8228
Loop: 18 : 4.3781 4.7981
Loop: 19 : 6.1460 4.869
Loop: 20 : 4.0902 4.8301

Note we have taken not too many Monte Carlo steps to finish the the
simulation in a reasonable short execution time.

Plot the MC iteration path

```r
> mcPrice = cumsum(mc)/(1:length(mc))
> plot(mcPrice, type = "l", main = "Arithmetic Asian Option", xlab = "Monte Carlo Loops",
     ylab = "Option Price")
> abline(h = 5.0118, col = "red")
> grid()
```

29.4 Exercises

Simulate an arithmetic Asian Option. The function to compute the payoff
is

```r
> arithmeticAsianPayoff <- function(path) {
    SM = mean(S * exp(cumsum(path)))
    if (TypeFlag == "c")
        payoff = exp(-r * Time) * max(SM - X, 0)
    else if (TypeFlag == "p")
        payoff = exp(-r * Time) * max(0, X - SM)
    payoff
}
```

The rest remains unchanged.
PART VIII

CASE STUDIES: PORTFOLIO DESIGN
CHAPTER 30

MEAN-VARIANCE MARKOWITZ PORTFOLIO

30.1 Assignment

Following Markowitz 1952 we define the problem of portfolio selection as follows:

\[
\min_w \ w^T \hat{\Sigma} \ w \\
\text{s.t.} \\
\ w^T \hat{\mu} = \bar{r} \\
\ w^T 1 = 1
\]

The formula expresses that we minimize the variance-covariance risk \(\sigma^2 = w^T \hat{\Sigma} \ w \), where the matrix \(\hat{\Sigma} \) is an estimate of the covariance of the assets. The vector \(w \) denotes the individual investments subject to the condition \(w^T 1 = 1 \) that the available capital is fully invested. The expected or target return \(\bar{r} \) is expressed by the condition \(w^T \hat{\mu} = \bar{r} \), where the \(p \)-dimensional vector \(\hat{\mu} \) estimates the expected mean of the assets.

The unlimited short selling portfolio can be solved analytically. However, if the weights are bounded by zero, which forbids short selling, then the optimization has to be done numerically. The structure of the portfolio problems is quadratic and thus we can use a quadratic solver to compute the weights of the portfolio. Then we consider as the standard Markowitz portfolio problem a portfolio which sets box and group constraints on the weights:

\[
\min_w \ w^T \Sigma \ w \\
\text{s.t.} \\
\ A w \leq b
\]
It can be shown that, if Σ is a positive definite matrix, the Markowitz portfolio problem is a convex optimization problem. As such, its local optimal solutions are also global optimal solutions.

The contributed R package quadprog provides the function `solve.QP()`, which interfaces a FORTRAN subroutine. This subroutine implements the dual method of Goldfarb and Idnani, 1982 and 1983, for solving quadratic programming problems of the form $\min(-c^T x + 1/2 x^T C x)$ with the constraints $A^T x \geq b$. We use in the following this solver for optimizing the long only constrained mean-variance Markowitz portfolio optimization problem.

References

30.2 R Implementation

We take the quadratic solver `solve.QP()` from the contributed R package `quadprog`

```r
> library(quadprog)
> args(solve.QP)

function (Dmat, dvec, Amat, bvec, meq = 0, factorized = FALSE)

NULL
```

This routine implements the dual method of Goldfarb and Idnani, 1982 and 1983, for solving quadratic programming problems of the form

$$\min(-d^T b + 1/2 b^T D b)$$

with the constraints

$$A^T b \geq b_0.$$

The argument list of the solver has 7 elements:

- `Dmat` matrix appearing in the quadratic function to be minimized
- `dvec` vector appearing in the quadratic function to be minimized
- `Amat` matrix defining the constraints
- `bvec` vector holding the values of b_0 (defaults to zero).
- `meq` the first `meq` constraints are treated as equality constraints, all further as inequality constraints (defaults to 0)
- `factorized` we do not use here.

The function returns a list with the following components:
solution vector containing the solution of the quadratic programming
problem.
value scalar, the value of the quadratic function at the solution
unconstrained.solution vector containing the unconstrained
minimizer of the quadratic function.
iterations vector of length 2, the first component contains the number
of iterations the algorithm needed, the second indicates how
often constraints became inactive after becoming active first.
iact vector with the indices of the active constraints at the
solution.

Now we are ready to write a function to optimize the Markowitz portfolio
for a set of asset returns and a given target return. The function body
consists of two parts: 1 create the portfolio settings from the arguments,
and 2 Optimize weights with the quadratic solver.

```r
> portfolio <- function(assetReturns, targetReturn)
> {
>   # Arguments:
>   # assetReturns - multivariate data set of asset returns
>   # target Return - the portfolios target return
>   
>   # 1 Create Portfolio Settings:
>   nAssets = ncol(assetReturns)
>   Dmat = cov(assetReturns)
>   dvec = rep(0, times=nAssets)
>   Amat = t(rbind(
>           Return=colMeans(assetReturns),
>           Budget=rep(1, nAssets),
>           LongOnly=diag(nAssets)))
>   bvec = c(
>           Return=targetReturn,
>           budget=1,
>           LongOnly=rep(0, times=nAssets))
>   meq = 2
>   
>   # 2 Optimize Weights:
>   portfolio = solve.QP(Dmat, dvec, Amat, bvec, meq)
>   weights = round(portfolio$solution, digits = 4)
>   names(weights) = colnames(assetReturns)
>   
>   # Return Value:
>   list(
>     weights = 100*weights,
>     risk = portfolio$value,
>     return = targetReturn)
> }
```

30.3 Examples

As an example we consider the Swiss pension fund benchmark which we
have compressed in 6 asset series and three benchmark series. The data
can be loaded from the Rmetrics package fBasics

```r
> library(fBasics)
> assetReturns <- 100 * LPP2005REC[, 1:6]
> names(assetReturns)
[1] "SBI" "SPI" "SII" "LMI" "MPI" "ALT"
```

Note to get daily percentage returns we have multiplied the series with 100. For the target return we choose the value of the grand mean of the assets

```r
> targetReturn <- mean(colMeans(assetReturns))
> targetReturn
[1] 0.043077
```

Then we optimize the portfolio

```r
> portfolio <- portfolio(assetReturns, targetReturn)
> portfolio
$weights
     SBI   SPI  SII   LMI   MPI   ALT
0.00 0.86 25.43 33.58 0.00 40.13

$risk
[1] 0.030034

$return
[1] 0.043077
```

Extract the weights from the returned list

```r
> weights = portfolio$weights
> names(weights) = colnames(data)
> weights
[1] 0.00 0.86 25.43 33.58 0.00 40.13
```

Check if we are fully invested and the sum of the weighted returns yields the target return

```r
> sum(weights)
[1] 100
> c(weightedReturn = round((weights %*% colMeans(assetReturns))[1], 3), targetReturn = round(100 * targetReturn, 3))
weightedReturn targetReturn
4.308 4.308
```

Let us now create a pie chart for the assets with non zero weights

```r
> args(pie)
function (x, labels = names(x), edges = 200, radius = 0.8, clockwise = FALSE,
     init.angle = if (clockwise) 90 else 0, density = NULL, angle = 45,
     col = NULL, border = NULL, lty = NULL, main = NULL, ...)
NULL
```
30.3. Examples

Figure 30.1: Pie Plot of Portfolio Weights

> Weights = weights[weights > 0]

> pie(Weights, labels = names(Weights))
> title(main = "LPP2005 Portfolio Weights")

Chapter 31

Markowitz Tangency Portfolio

31.1 Assignment

Reward/risk profiles from the Markowitz portfolio of different combinations of a risky portfolio with a riskless asset, with expected return r_f, can be represented as a straight line in a risk versus reward plot, the so called capital market line, CML. The point where the CML touches the efficient frontier corresponds to the optimal risky portfolio. This portfolio is also called the mean–variance tangency portfolio. Mathematically, this can be expressed as the portfolio that maximizes the quantity

$$\max_w h(w) = \frac{\hat{\mu}^T w - r_f}{w^T \hat{\Sigma} w}$$

s.t.

$$w^T \hat{\mu} = \bar{r}$$

$$w^T 1 = 1$$

among all w. This quantity is precisely the Sharpe ratio introduced by Sharpe, 1994.

In the following we want to write an R function which computes for a mean–variance Markowitz portfolio, the tangency portfolio, i.e. the risk, the return, the weights and the Sharpe ratio in this point.

References

Harry M. Markowitz, 1952, Portfolio Selection,
The Journal of Finance 7, 77–91

Wikipedia, Modern Portfolio Theory, 2010,
http://en.wikipedia.org/wiki/Modern_portfolio_theory

31.2 R Implementation

We use a simplified version of the `portfolio()` function from the previous case study to compute the weights for mean-variance Markowitz portfolio with long only constraints.

```r
> library(quadprog)
> portfolioWeights <- function(assetReturns, targetReturn)
  {
    nAssets = ncol(assetReturns)
    portfolio = solve.QP(
      Dmat = cov(assetReturns),
      dvec = rep(0, times=nAssets),
      Amat = t(rbind(Return=colMeans(assetReturns),
                    Budget=rep(1, nAssets), LongOnly=diag(nAssets))),
      bvec = c(Return=targetReturn, budget=1,
                LongOnly=rep(0, times=nAssets)),
      meq=2)
    weights = portfolio$solution
    weights
  }
```

The tangency portfolio is then obtained by maximizing the Sharpe Ratio as a function of the target return. The steps are the following: 1 we write an internal function for Sharpe ratio, 2 then we optimize the weights for the tangency portfolio, and 3 we extract the characteristics of the tangency portfolio. These are the tangency portfolio’s risk, its returns, the corresponding weights, and the resulting Sharpe ratio.

The function we use for optimization is the base R function `optim()`. This is a general-purpose optimizer based on Nelderâ€™sMead, quasi-Newton and conjugate-gradient algorithms. We use the default settings. The optimizer allows for for box-constrained optimization, in our case the box is the range of the possible returns.

Note that to pass the weights and target risk value we have added attributes to the returns value of the `harpeRatio()` function

```r
> tangencyPortfolio <-
  function (assetReturns, riskFreeRate=0)
  {
    # 1 Sharpe Ratio Function:
    sharpeRatio <- function(x, assetReturns, riskFreeRate)
    {
      targetReturn = x
      weights = portfolioWeights(assetReturns, targetReturn)
      targetRisk = sqrt( weights %*% cov(assetReturns) %*% weights )[[1]]
      ratio = (targetReturn - riskFreeRate)/targetRisk
      attr(ratio, "weights") <- weights
      attr(ratio, "targetRisk") <- targetRisk
    }
    # 2 Optimize Target Return
    targetReturns <- seq(0, max(colMeans(assetReturns)), by=0.01)
    results <- sapply(targetReturns, sharpeRatio, assetReturns=assetReturns, riskFreeRate)
    tangencyReturns <- results[which.max(results[,2]),]$
    # 3 Extract Characteristics
    tangencyReturns$weights
    tangencyReturns$targetRisk
    tangencyReturns$ratio
  }
```
31.3. Examples

As an example we consider as in the previous case study the Swiss pension fund benchmark. The data can be loaded from the Rmetrics package `fBasics`. We use daily percentage returns

```r
> library(fBasics)
> assetReturns <- 100 * LPP2005REC[, 1:6]
> names(assetReturns)
[1] "SBI" "SPI" "SII" "LMI" "MPI" "ALT"
```

Now let us compute the tangency portfolio for a risk free rate.

```r
> tangencyPortfolio(assetReturns, riskFreeRate = 0)
$sharpeRatio
[1] 0.18471

$tgRisk
[1] 0.15339

$tgReturn
[1] 0.02833

$tgWeights
[1] 0.00000e+00 4.8169e-04 1.8244e-01 5.7512e-01 4.7712e-18 2.4196e-01
```

Note depending on the assets, the tangency portfolio may not always exist, and thus our function may fail.
CHAPTER 32

LONG ONLY PORTFOLIO FRONTIER

32.1 ASSIGNMENT

The efficient frontier together with the minimum variance locus form the “upper border” and “lower border” lines of the set of all feasible portfolios. To the right the feasible set is determined by the envelope of all pairwise asset frontiers. The region outside of the feasible set is unachievable by holding risky assets alone. No portfolios can be constructed corresponding to the points in this region. Points below the frontier are suboptimal. Thus, a rational investor will hold a portfolio only on the frontier. Now we show how to compute the whole efficient frontier and the minimum variance locus of a mean-variance portfolio.

References

32.2 R IMPLEMENTATION

We use a simplified version of the portfolio() function from the previous case study to compute the weights on the efficient frontier and the minimum variance locus.

```r
> library(quadprog)
> portfolioWeights <- function(assetReturns, targetReturn)
> {
>     nAssets = ncol(assetReturns)
>     portfolio = solve.QP(
>         Dmat = cov(assetReturns),
>         dvec = rep(0, nAssets),
>         Aeq = NULL,
>         beq = targetReturn,
>         meq = 1,
>         Amat = assetReturns, b = rep(1, nAssets))
>     portfolio
> }
```
Now we write the function `portfolioFrontier()` which returns the weights of portfolios along the frontier with equidistant target returns. The number of efficient portfolios is given by `nPoints`

```
> portfolioFrontier <- function(assetReturns, nPoints=20) {
  # Number of Assets:
  nAssets = ncol(assetReturns)
  
  # Target Returns:
  mu = colMeans(assetReturns)
  targetReturns <- seq(min(mu), max(mu), length=nPoints)
  
  # Optimized Weights:
  weights = rep(0, nAssets)
  weights[which.min(mu)] = 1
  for (i in 2:(nPoints-1)) {
    newWeights = portfolioWeights(assetReturns, targetReturns[i])
    weights = rbind(weights, newWeights)
  }
  newWeights = rep(0, nAssets)
  newWeights[which.max(mu)] = 1
  weights = rbind(weights, newWeights)
  
  weights = round(weights, 4)
  colnames(weights) = colnames(assetReturns)
  rownames(weights) = 1:nPoints
  
  # Return Value:
  weights
}
```

Note the first and last portfolios are those from the assets with the highest and lowest returns.

32.3 Examples

As an example we consider as in the previous case study the Swiss pension fund benchmark. The data can be loaded from the Rmetrics package fBasics. We use daily percentage returns

```
> library(fBasics)
> assetReturns <- 100 * LPP2005REC[, 1:6]
> names(assetReturns)
```
32.3. Examples

[1] "SBI" "SPI" "SII" "LMI" "MPI" "ALT"

Then we compute the weights for 20 portfolios on the efficient frontier and on the minimum variance locus

```r
> weights = portfolioFrontier(assetReturns, nPoints = 20)
> print(weights)

             SBI     SPI     SII     LMI     MPI     ALT
1  1.00000000 0.000000 0.000000 0.000000 0.000000 0.000000
2  0.54571429 0.000000 0.042424 0.388732 0.023148 0.000000
3  0.38285714 0.000000 0.082857 0.478313 0.014615 0.041528
4  0.26259574 0.000000 0.105596 0.537735 0.000000 0.094118
5  0.12345679 0.000000 0.129870 0.611364 0.000000 0.135246
6  0.00000000 0.000000 0.154027 0.668535 0.000000 0.177508
7  0.00000000 0.000000 0.176471 0.594951 0.000000 0.228571
8  0.00000000 0.002326 0.198531 0.521739 0.000000 0.277419
9  0.00000000 0.004794 0.220492 0.448351 0.000000 0.326316
10 0.00000000 0.007352 0.242519 0.375270 0.000000 0.375000
11 0.00000000 0.009821 0.264538 0.302028 0.000000 0.423810
12 0.00000000 0.012380 0.286556 0.228703 0.000000 0.472527
13 0.00000000 0.014839 0.308574 0.155521 0.000000 0.521328
14 0.00000000 0.017398 0.330593 0.082225 0.000000 0.570037
15 0.00000000 0.019856 0.352511 0.009030 0.000000 0.618846
16 0.00000000 0.026340 0.291023 0.000000 0.000000 0.682741
17 0.00000000 0.033326 0.217946 0.000000 0.000000 0.748837
18 0.00000000 0.040312 0.144872 0.000000 0.000000 0.814932
19 0.00000000 0.047298 0.071798 0.000000 0.000000 0.880928
20 0.00000000 0.000000 0.000000 0.000000 0.000000 1.000000
```

and save the target returns and target risks

```r
> mu = colMeans(assetReturns)
> targetReturns = seq(min(mu), max(mu), length = nrow(weights))
> targetRisks = NULL
> for (i in 1:nrow(weights)) {
    newTargetRisk = sqrt(weights[i, ] %*% cov(assetReturns) %*% weights[i, ])
    targetRisks = c(targetRisks, newTargetRisk)
}
```

Finally we plot the efficient frontier and the minimum variance locus

```r
> plot(targetRisks, targetReturns, pch = 19)
> title(main = "LPP Benchmark Portfolio")
```
FIGURE 32.1: Efficient Frontier and Minimum Variance Locus
CHAPTER 33

MINIMUM REGRET PORTFOLIO

33.1 ASSIGNMENT

The minimum regret portfolio maximizes the minimum return for a set of return scenarios. This can be accomplished by solving the following linear program.

\[
\begin{align*}
\max_{R_{\text{min}}, w} & \quad R_{\text{min}} \\
\text{s.t.} & \quad w^\top \hat{\mu} = \bar{\mu} \\
& \quad w^\top 1 = 1 \\
& \quad w_i \geq 0 \\
& \quad w^\top r_s - R_{\text{min}} \geq 0
\end{align*}
\]

(33.1)

Let us write a function which solves this optimization problem.

References

Bernd Michael Scherer and R. Douglas Martin, 2005,
Introduction to Modern Portfolio Optimization with NuOPT and S-PLUS,
Springer Publishing, New York

GNU Linear Programming Kit
http://www.gnu.org/software/glpk/glpk.html

33.2 R IMPLEMENTATION

To solve a linear optimization program with linear constraints we use R’s contributed Rglpk, which has implemented GNU’s linear programming solver tool kit. Load the library and the arguments of the solver.
> library(Rglpk)
Using the GLPK callable library version 4.42
> args(Rglpk_solve_LP)

function (obj, mat, dir, rhs, types = NULL, max = FALSE, bounds = NULL,
verbose = FALSE)
NULL

The arguments have the following meaning:

- **obj**: a vector with the objective coefficients
- **mat**: a vector or a matrix of the constraint coefficients
- **dir**: a character vector with the directions of the constraints. Each element must be one of "<", "<="", ">", ">="", or "==".
- **rhs**: the right hand side of the constraints
- **types**: a vector indicating the types of the objective variables. Types can be either "B" for binary, "C" for continuous or "I" for integer. By default all variables are of type "C".
- **max**: a logical giving the direction of the optimization. TRUE means that the objective is to maximize the objective function, FALSE (default) means to minimize it.
- **bounds**: NULL (default) or a list with elements upper and lower containing the indices and corresponding bounds of the objective variables. The default for each variable is a bound between 0 and Inf.
- **verbose**: a logical for turning on/off additional solver output, Default: FALSE.

The function returns a list with the following components:

- **solution**: the vector of optimal coefficients
- **objval**: the value of the objective function at the optimum
- **status**: an integer with status information about the solution returned: 0 if the optimal solution was found, a non-zero value otherwise.

Alternatively we can use the solver function Rsymphony_solve_LP() from the contributed package Rsymphony.

Now we are ready to write a function to optimize the minimum regret portfolio for a set of asset returns and a given target return. The function body consists of several parts: 1 defining the vector for the objective function, 2 setting up the matrix of linear constraints excluding the simple bounds, 3 creating the vectors of directions and the values of the right hand side, and 4 setting the values for the lower and upper bounds. And the final step is the optimization itself.

> portfolioWeights <- function(assetReturns, targetReturn) {
 assetNames = colnames(assetReturns)
 assetReturns = as.matrix(assetReturns)
 nAssets = ncol(assetReturns)
 nScenarios = nrow(assetReturns)
 mu = colMeans(assetReturns)
 obj <- c(R.min = 1, Weights = rep(0, nAssets))
As an example we consider again as in the previous case study the Swiss pension fund benchmark. The data can be loaded from the Rmetrics package fBasics. We use daily percentage returns

```r
> library(fBasics)
> assetReturns <- 100 * LPP2005REC[, 1:6]
> head(assetReturns)
GMT
SBI SPI SII LMI MPI ALT
2005-11-01 -0.061275 0.841460 -0.31909 -0.110888 0.154806 -0.257297
2005-11-02 -0.276201 0.251934 -0.41176 -0.117594 0.034288 -0.114160
2005-11-03 -0.115309 1.270729 -0.52094 -0.099246 1.050296 0.500744
2005-11-04 -0.323575 -0.070276 -0.11272 -0.119853 1.167956 0.948268
2005-11-07 0.131097 0.620523 -0.17958 0.036037 0.270962 0.472395
2005-11-08 0.053931 0.032926 0.21034 0.232704 0.034684 0.085362
> end(assetReturns)
GMT
[1] [2007-04-11]
```

In this example we choose the grand mean of all assets as the values for the target return.

```r
> targetReturn = mean(assetReturns)
> targetReturn
[1] 0.043077
```

The next step will be the optimization of the portfolio

```r
> weights = portfolioWeights(assetReturns, targetReturn)
> weights
```
Now compare the weights with those from the mean-variance Markowitz portfolio.
PART IX

APPENDIX
APPENDIX A

Rmetrics Terms of Legal Use

Grant of license

Rmetrics Association and Finance Online Zurich have authorized you to download one copy of this electronic book (ebook). The service includes free updates for the period of one year. Rmetrics Association and Finance Online Zurich grant you a nonexclusive, nontransferable license to use this eBook according to the terms and conditions specified in the following. This license agreement permits you to install and use the eBook for your personal use only.

Restrictions

You shall not resell, rent, assign, timeshare, distribute, or transfer all or any part of this eBook (including code snippets and functions) or any rights granted hereunder to any other person.
You shall not duplicate this eBook, except for backup or archival purposes.
You shall not remove any proprietary notices, labels, or marks from this eBook and transfer to any other party.

The code snippets and functions provided in this book are for teaching and educational research, i.e. for non commercial use. It is not allowed to use the provided code snippets and functions for any commercial use. This includes workshops, seminars, courses, lectures, or any other events. The unauthorized use or distribution of copyrighted or other proprietary content from this eBook is illegal.

intellectual property protection

This eBook is owned by the Rmetrics Association and Finance Online and is protected by international copyright and other intellectual property laws.
Rmetrics Association and Finance Online Zurich reserve all rights in this eBook not expressly granted herein. This license and your right to use this eBook terminates automatically if you violate any part of this agreement. In the event of termination, you must destroy the original and all copies of this eBook.

General

This agreement constitutes the entire agreement between you and Rmetrics Association and Finance Online Zurich and supersedes any prior agreement concerning this eBook. This agreement is governed by the laws of Switzerland.

(C) 2009, 2010 Rmetrics Association. All rights reserved.
APPENDIX B

R MANUALS ON CRAN

The R core team creates several manuals for working with R\(^1\)

The platform dependent versions of these manuals are part of the respective R installations. They can be downloaded as PDF files from the URL given above or can directly browsed as HTML.

http://cran.r-project.org/manuals.html

The following manuals are available:

- An Introduction to R is based on the former "Notes on R", gives an introduction to the language and how to use R for doing statistical analysis and graphics.

- A draft of The R language definition documents the language per se. That is, the objects that it works on, and the details of the expression evaluation process, which are useful to know when programming R functions.

- Writing R Extensions covers how to create your own packages, write R help files, and the foreign language (C, C++, Fortran, ...) interfaces.

- R Data Import/Export describes the import and export facilities available either in R itself or via packages which are available from CRAN.

- R Installation and Administration.

- R Internals: a guide to the internal structures of R and coding standards for the core team working on R itself.

- The R Reference Index: contains all help files of the R standard and recommended packages in printable form, (approx. 3000 pages).

\(^1\)The manuals are created on Debian Linux and may differ from the manuals for Mac or Windows on platform-specific pages, but most parts will be identical for all platforms.
The latex or texinfo sources of the latest version of these documents are contained in every R source distribution. Have a look in the subdirectory doc/manual of the extracted archive. The HTML versions of the manuals are also part of most R installations. They are accessible using function `help.start()`.
INDEX

), 213
aggregate, 33
apply, 86
arima, 160
array, 10
arrays, 9
arrows, 130
as.list, 17
attributes, 34
axes, 132
axis, 132
bar plot, 110
barplot, 112
browser, 82
by, 88
by, 88
c, 3
cbind, 31
character, 63
character manipulation, 36
chol, 9
colClasses, 47
comments, 68
complex, 60
CSV files, 48
cumulative sum, 22
curve, 105
cut, 40
data frames, 10
debug, 81
debugging, 79
diff, 24
difftime, 56
dim, 7
dotschart, 115
double, 52
duplicated, 24
factor, 58
figure region, 123
flow control, 74
for, 76
formula objects, 167
free variables, 72
Graphical Devices, 135
grep, 37
gsub, 39
head, 30
hypothesis tests, 146
if, 74
image, 115
import data, 43
integer, 57
is.infinite, 53
is.na, 62
is.nan, 62
join, 32
keywords
abline, 128
abs, 4
cos, 4
acos, 4
acosh, 4
action, 79, 157
add, 117
all, 51, 106, 137, 185
anova, 178
any, 51
array, 122
arrows, 128, 129
as, 44, 123
asin, 4
asinh, 4
atan, 4
atanh, 4
ave, 83
axis, 107, 117–119, 122, 123
beta, 144
binomial, 144
box, 122
boxplot, 107
browser, 79, 82
by, 114, 122, 151, 159
C, 43
c, 20, 34, 141
call, 79, 159
ceiling, 4
character, 12, 44–46, 51, 123
chol, 9
class, 12
cm, 127
coeff, 159, 178
coefficients, 141, 152, 159, 160
col, 9, 46, 122
colors, 115, 122, 127
colours, 127
complex, 51
contour, 114
contrib, 99
control, 160
cor, 141
cos, 4
cosh, 4
cov, 141
CRAN, 98
cur, 137
data, 12, 44, 49, 106, 114
debug, 79, 81
default, 70, 118, 119, 122
deltat, 12
density, 107, 144
dev, 137
deviance, 178
df, 106
diag, 9
dnorm, 144
double, 51
download, 99
else, 74
end, 12, 122
environment, 52
equal, 61
exp, 4, 144
expression, 52, 167
factor, 59, 106, 114, 122
family, 122
fields, 44
file, 44, 46, 49, 135
filled, 114
fitted, 151, 157, 159, 161, 178
fix, 160
floor, 4
for, 12, 45, 46, 59, 76, 79, 97,
 106, 114, 117, 118, 122,
 123, 135, 144, 151, 152,
 157, 159–161
format, 135
frame, 49, 106, 122
frequency, 12, 159
function, 4, 49, 51, 52, 67, 79,
 82, 107, 114, 144, 151,
 157, 160, 178
Gamma, 144
gamma, 4, 144
graphics, 97, 135, 137
grid, 97, 115
heat, 127
help, 21
Index

hist, 107
if, 44, 74, 80, 106, 107, 122
image, 114, 115
install, 99
installed, 99
integer, 51, 118, 122
inverse, 4, 9
is, 20, 52, 61, 70, 87, 106, 122
kappa, 160
labels, 117, 118, 122
layout, 97
legend, 129
length, 20, 52, 123
levels, 114
lgamma, 4
lines, 44–46, 114, 118, 122
list, 137
load, 49
local, 99
log, 4, 80, 117
log10, 4
logical, 51
mad, 141
margin, 122
matrix, 8, 9, 12, 160
max, 141, 157, 159
mean, 141, 144, 157, 159, 160
median, 141
methods, 97, 157, 161
min, 141
missing, 80, 157
model, 151, 157, 159–161, 178
mtext, 129
na, 157
names, 12, 46, 117, 157
ncol, 8, 9
new, 99, 122, 137
next, 122, 137
nrow, 9
numeric, 12, 87, 106, 107, 160
objects, 97
off, 137
on, 79, 99, 115, 122, 135, 152
Ops, 59
optim, 160
or, 12, 44, 45, 61, 79, 114, 115,
 117, 122, 123, 141, 146,
 152, 157, 160
order, 152, 157, 159, 160
outer, 122, 123
package, 97
packages, 99
page, 122
pairlist, 52
pairs, 114, 129
palette, 127
par, 121, 122
persp, 115
pictex, 135
plot, 106, 107, 114, 115, 117,
 118, 122, 123, 128, 129,
 178
pnorm, 144
points, 46, 118, 123, 128, 129
postscript, 135
power, 70
predict, 151, 178
prev, 137
ps, 123, 135
q, 144
qnorm, 144
qqline, 107
qqnorm, 107
qqplot, 107
qr, 9
quantile, 107, 141, 144
quote, 44, 46
R, 52, 97, 107
rainbow, 127
range, 117, 141
read, 44–46, 49
real, 51
repeat, 77
replace, 20
resid, 159, 178
residuals, 159, 161, 178
<table>
<thead>
<tr>
<th>response</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>rnorm</td>
<td>144</td>
</tr>
<tr>
<td>round</td>
<td>4</td>
</tr>
<tr>
<td>row</td>
<td>9,</td>
</tr>
<tr>
<td></td>
<td>46</td>
</tr>
<tr>
<td>sample</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td>sapply</td>
<td>87</td>
</tr>
<tr>
<td>scale</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>123</td>
</tr>
<tr>
<td>sd</td>
<td>144</td>
</tr>
<tr>
<td>segments</td>
<td>128</td>
</tr>
<tr>
<td>set</td>
<td>46,</td>
</tr>
<tr>
<td></td>
<td>137</td>
</tr>
<tr>
<td>sin</td>
<td>4</td>
</tr>
<tr>
<td>single</td>
<td>44,</td>
</tr>
<tr>
<td></td>
<td>122,</td>
</tr>
<tr>
<td></td>
<td>123</td>
</tr>
<tr>
<td>sinh</td>
<td>4</td>
</tr>
<tr>
<td>solve</td>
<td>9</td>
</tr>
<tr>
<td>source</td>
<td>49</td>
</tr>
<tr>
<td>spline</td>
<td>97</td>
</tr>
<tr>
<td>sqrt</td>
<td>4</td>
</tr>
<tr>
<td>start</td>
<td>12</td>
</tr>
<tr>
<td>stop</td>
<td>79</td>
</tr>
<tr>
<td>sub</td>
<td>118</td>
</tr>
<tr>
<td>sum</td>
<td>83,</td>
</tr>
<tr>
<td></td>
<td>178</td>
</tr>
<tr>
<td>summary</td>
<td>178</td>
</tr>
<tr>
<td>svd</td>
<td>9</td>
</tr>
<tr>
<td>switch</td>
<td>75</td>
</tr>
<tr>
<td>symbol</td>
<td>52,</td>
</tr>
<tr>
<td></td>
<td>117</td>
</tr>
<tr>
<td>symbols</td>
<td>114,</td>
</tr>
<tr>
<td></td>
<td>118,</td>
</tr>
<tr>
<td></td>
<td>122,</td>
</tr>
<tr>
<td></td>
<td>123</td>
</tr>
<tr>
<td>system</td>
<td>9,</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
<tr>
<td>t</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td>table</td>
<td>49,</td>
</tr>
<tr>
<td></td>
<td>178</td>
</tr>
<tr>
<td>tan</td>
<td>4</td>
</tr>
<tr>
<td>tanh</td>
<td>4</td>
</tr>
<tr>
<td>terrain</td>
<td>127</td>
</tr>
<tr>
<td>text</td>
<td>117,</td>
</tr>
<tr>
<td></td>
<td>118,</td>
</tr>
<tr>
<td></td>
<td>122,</td>
</tr>
<tr>
<td></td>
<td>123,</td>
</tr>
<tr>
<td></td>
<td>129</td>
</tr>
<tr>
<td>time</td>
<td>12,</td>
</tr>
<tr>
<td></td>
<td>106,</td>
</tr>
<tr>
<td></td>
<td>151,</td>
</tr>
<tr>
<td></td>
<td>152,</td>
</tr>
<tr>
<td></td>
<td>157,</td>
</tr>
<tr>
<td></td>
<td>159,</td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
<tr>
<td>title</td>
<td>117,</td>
</tr>
<tr>
<td>topo</td>
<td>127</td>
</tr>
<tr>
<td>traceback</td>
<td>79,</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td>transform</td>
<td>160</td>
</tr>
<tr>
<td>trunc</td>
<td>4</td>
</tr>
<tr>
<td>ts</td>
<td>12,</td>
</tr>
<tr>
<td></td>
<td>106</td>
</tr>
<tr>
<td>update</td>
<td>99</td>
</tr>
<tr>
<td>url</td>
<td>99</td>
</tr>
<tr>
<td>var</td>
<td>9,</td>
</tr>
<tr>
<td></td>
<td>159</td>
</tr>
<tr>
<td>variable</td>
<td>52,</td>
</tr>
<tr>
<td></td>
<td>115</td>
</tr>
<tr>
<td>vector</td>
<td>9,</td>
</tr>
<tr>
<td></td>
<td>12,</td>
</tr>
<tr>
<td></td>
<td>46,</td>
</tr>
<tr>
<td></td>
<td>51,</td>
</tr>
<tr>
<td></td>
<td>52,</td>
</tr>
<tr>
<td></td>
<td>106,</td>
</tr>
<tr>
<td></td>
<td>107,</td>
</tr>
<tr>
<td></td>
<td>122,</td>
</tr>
<tr>
<td></td>
<td>141,</td>
</tr>
<tr>
<td></td>
<td>152,</td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Version</td>
<td>99</td>
</tr>
<tr>
<td>warning</td>
<td>79</td>
</tr>
<tr>
<td>which</td>
<td>52,</td>
</tr>
<tr>
<td></td>
<td>117,</td>
</tr>
<tr>
<td></td>
<td>118,</td>
</tr>
<tr>
<td></td>
<td>122,</td>
</tr>
<tr>
<td></td>
<td>161</td>
</tr>
<tr>
<td>while</td>
<td>76</td>
</tr>
<tr>
<td>X11</td>
<td>135</td>
</tr>
<tr>
<td>x11</td>
<td>135</td>
</tr>
<tr>
<td>zip</td>
<td>99</td>
</tr>
<tr>
<td>lapply</td>
<td>88</td>
</tr>
<tr>
<td>lapply</td>
<td>87</td>
</tr>
<tr>
<td>layout</td>
<td>124</td>
</tr>
<tr>
<td>layout .show</td>
<td>124</td>
</tr>
<tr>
<td>lazy evaluation</td>
<td>73</td>
</tr>
<tr>
<td>Legend</td>
<td>130</td>
</tr>
<tr>
<td>length</td>
<td>21</td>
</tr>
<tr>
<td>level</td>
<td>58</td>
</tr>
<tr>
<td>lexical scope</td>
<td>72</td>
</tr>
<tr>
<td>linear regression</td>
<td>165</td>
</tr>
<tr>
<td>lines</td>
<td>129</td>
</tr>
<tr>
<td>lists</td>
<td>14</td>
</tr>
<tr>
<td>local variables</td>
<td>70</td>
</tr>
<tr>
<td>logical</td>
<td>61</td>
</tr>
<tr>
<td>loops</td>
<td>74</td>
</tr>
<tr>
<td>low level plot functions</td>
<td>128</td>
</tr>
<tr>
<td>margins</td>
<td>123</td>
</tr>
<tr>
<td>Mathematical Operators</td>
<td>4</td>
</tr>
<tr>
<td>matrix</td>
<td>6</td>
</tr>
<tr>
<td>matrix</td>
<td>6</td>
</tr>
<tr>
<td>merge</td>
<td>32</td>
</tr>
<tr>
<td>model diagnostics</td>
<td>172</td>
</tr>
<tr>
<td>multiple plots per page</td>
<td>123</td>
</tr>
<tr>
<td>NA</td>
<td>62</td>
</tr>
<tr>
<td>NULL</td>
<td>63</td>
</tr>
<tr>
<td>optional argument</td>
<td>69</td>
</tr>
<tr>
<td>order</td>
<td>23</td>
</tr>
<tr>
<td>ordered factors</td>
<td>60</td>
</tr>
<tr>
<td>outer</td>
<td>89</td>
</tr>
<tr>
<td>outer margins</td>
<td>123</td>
</tr>
</tbody>
</table>
INDEX

persp, 116
pie plot, 110
plot, 103
plot region, 123
Plot Symbols, 130
png, 137
Points, 130
POSIXct, 54
POSIXlt, 54
probability distributions, 143
proc.time, 84
quote, 48

R classes
 (, 231
diffTime, 54
hclust\hyperpage, 234
lm\hyperpage, 95
ts, 176

R data
cars, 88

R functions
 .Random.seed, 146
 .dsnorm, 221
 abline, 129
 acf, 152, 154
 add1, 174, 175
 aggregate, 34
 all, 21, 22
 any, 21, 22
 apply, 86
 ar, 151, 152, 156, 157, 159
 arguments
 append, 43
 breaks, 40
colClasses, 47, 48
 file, 43
 fixed, 39
 labels, 40
 las, 119
 lty, 119
 ncolumns, 43
 pattern, 39
 quote, 48
 sep, 43, 48
 split, 39
 stringsAsFactors, 47
 what, 44
 x, 39, 40, 43, 70
 arima, 151, 152, 160
 array, 10
 arrows, 130
 as.complex, 60
 as.list, 17
 as.POSIXlt, 55
 attr, 35
 attributes, 35
 browser, 82
 by, 88, 89
 cbind, 7
 chisq.test, 148
 class, 52
 clusteredAssets, 234
 clusteredAssets, 233
 coef, 95
col, 70
colours, 126
colStats, 184
corr, 179
cov, 179
cummax, 22
cummin, 22
cumprod, 22
cumsum, 22, 85
curve, 106
cut, 40
data, 49
data.frame, 11
debug, 81
delta, 247
density, 109
density.default, 109
dev.cur, 136
dev.list, 136
dev.off, 137
dev.set, 137
dged, 219
difftime, 56
dim, 7, 36
dist, 192, 234
dnorm, 219
drop1, 175
dump, 68
duplicated, 24
factor, 58
filter, 152
fitted, 95
for, 83
formula, 167
gedFit, 220
getFRed, 171
getYahoo, 170
grep, 37
gsub, 39
harpeRatio, 268
hclust, 233, 234
heat.colors, 126
Heaviside, 222
help.start, 284
hist, 109
hsv, 126
if, 74
ifelse, 84, 85, 145
install.packages, 98
is.double, 53
kmeans, 188
ks.test, 147
kurtosis, 203
lapply, 87, 88
layout, 124, 125
layout.show, 125
legend, 130
length, 21
levels, 59
library, 205
lines, 129
list, 14, 16
listDescription, 206
listIndex, 206
lm, 94, 165
log, 83
lsfit, 15
mad, 143
matplot, 127
matrix, 7
max, 21, 143
mean, 143, 199
median, 143
merge, 33
methods, 91
min, 21, 143
mode, 52
months, 57
names, 11, 28
nchar, 36
optim, 268
options(devices), 136
outer, 89
pacf, 155
pairs, 179
palette, 126
par, 117, 120–123
paste, 36
path.gen, 255
payoff.calc, 255
pbeta, 144
pged, 220
pie, 110
plot, 70, 91, 93, 95, 104, 106, 107, 109, 126
plot.acf, 96
plot.default, 96, 117
plot.histogram, 109
plot.ts, 96
plotmath, 131
pnorm, 220
points, 130
portfolio, 268, 271
portfolioFrontier, 272
predict, 95, 152
predict.ar, 152
predict.Arima, 152
print, 95
prod, 21
qgamma, 144
qged, 220
qnorm, 220
qqline, 109
qqnorm, 109
qsnorm, 224
quantile, 149
quarters, 57
rainbow, 126
range, 21
rbind, 7
read.csv, 48
read.csv2, 48
read.delim, 48
read.delim2, 48
read.table, 46, 48, 50
read.xls, 48
readLines, 45, 50
regexpr, 37, 38
rep, 6
repeat, 77
require, 207
resid, 161
residuals, 95, 161
return, 67
rgb, 126
rho, 248
rownames, 11
Rsymphony_solve_LP, 276
sapply, 87, 88
scan, 44
sd, 143
segments, 130
seq, 5
set.seed, 103, 146
setwd, 68
shapiro.test, 148
sin, 70, 83
skewness, 203
snormFit, 224
solve.QP, 262
sort, 23
source, 68
stack, 34
stars, 113, 186
stop, 80, 81
storage.mode, 52
str, 18
strptime, 56
strsplit, 39
structure, 35
sub, 39
substring, 36, 38
sum, 21
summary, 95, 143, 178
switch, 75
Sys.time, 57
t, 234
tapply, 88
testf, 81
text, 130
theta, 247
tmean, 68
traceback, 79
ts, 12
tsdiag, 152, 161
tsp, 14
typeof, 51, 53
update, 175
var, 199
vega, 248
warning, 80, 81
weekdays, 57
while, 76
wilcox.test, 148
write, 43, 44
write.xls, 48
xlab, 70
R packages
(, 230
chron, 57
fBasics, 264, 269, 272, 277
its, 57
quadprog, 262
Rglpk, 275
Rsymphony, 276
timeDate, 57
tseries, 57
utiles, 205
utils, 99, 208
zoo, 57
ragged arrays, 88
random sample, 145
rbind, 32
read.table, 46
readLines, 45
Recycling, 4
regexp, 37
regular expressions, 37
rep, 6
repeat, 77
replacing characters, 39
required argument, 69
return, 71
rev, 23
round, 4
sample, 23, 145
sapply, 87
scan, 44
scoping rules, 72
segments, 130
semicolon separator, 22
sequence function, 5
solve, 9
sort, 23
stack, 34
stacking data frames, 32
stars, 112
statistical summary functions, 141
stop, 80
str, 18
stringsAsFactors, 47
strptime, 56
strsplit, 39
structure, 18
sub, 39
subset, 30
subset, 31
svd, 9
switch, 75
symbols, 115
system.time, 84
tail, 30
tapply, 88
terms, 168
time-series, 12
title, 130
titles, 103
traceback, 79
transpose, 9
tsp, 12
typeof, 51
unique, 24
vector, 3
vector subscripts, 19
warning, 80
while, 76
XLS files, 48
Diethelm Würtz is private lecturer at the Institute for Theoretical Physics, ITP, and for the Curriculum Computational Science and Engineering, CSE, at the Swiss Federal Institute of Technology in Zurich. He teaches Econophysics at ITP and supervises seminars in Financial Engineering at CSE. Diethelm is senior partner of Finance Online, an ETH spin-off company in Zurich, and co-founder of the Rmetrics Association.

Yohan Chalabi has a master in Physics from the Swiss Federal Institute of Technology in Lausanne. He is now a PhD student in the Econophysics group at ETH Zurich at the Institute for Theoretical Physics. Yohan is a co-maintainer of the Rmetrics packages.

Longhow Lam Longhow currently works for ABNAMRO where he builds credit risk models. He has a lot of practical experience in using R / S-PLUS and SAS in predictive model building for different companies. He has given many introductory courses on the S language.

Andrew Ellis read neuroscience and mathematics at the University in Zurich. He works for Finance Online and is currently doing an internship in the Econophysics group at ETH Zurich. Andrew is working on the Rmetrics documentation project.